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The general properties of the dispersion surface in the three-wave case are considered. 
A method of the derivation of the dispersion equation is suggested in an invariant form con- 
venient for the concrete analysis. An analysis of t,he amplification of the anomalous trans- 
mission (Borrmann) effect in the t,hree-wave case and a simple way for t.he estimation of this 
effect without. large numerical calculations are given. The passage from two- to three-wave 
case is considered. This analysis allows to predict, a general form of the dependence of the 
absorption coefficient on the orientation of the incident beam. 

PaCCMOTpeHbI o64ure CBOaCTBa ~MCnepCHOHHO8 nOBepXHOCTH B TpeXBOJIHOBOM 
npeHJIOmeH MeTOn BbIBOna ~~C~epCIIOHHOrO J’paBHeHMfi B MHBapMClHTHOih CJlylrae. 

q)op&Ie, y ~ o i i ~ o i ?  ~ n c ~  a ~ a n m a .  A H ~ J I P I ~ H P ~ ~ T C H  ycrmeane a@@erc~a aHoManbHoro 
npoxomnemcI ( 3 @ @ e ~ ~ a  BopiuaHa) B TpexBonHoBoM cnyme II npennomea npomofi 
cnoco6 o g e H m  3~01-0 a @ @ e ~ . ~ a ,  He Tpe6yrouaB Conamoro wcneHHoro cqeTa. 

npencxa3a~b 0 6 4 ~ f i  xoa, ~ ~ B M C M M O C T M  Ko3@@MuiteHTa noFnou1eHm OT opnemaum 
nanawuero nyqKa. 

1. Introduction 

PaCCMOTpeH IIepeXOa OT TpeXBOJlHOBOrO CnvqaH K nBJ7XBOnHOBOMy, q T 0  n03BOJIfiaeT 

In recent years, interst in three-wave diffraction of X-rays has continuously 
increased. Many papers have been published in which this phenomenon has 
been investigated both experimentally and t.heoretically [1 to 111. In [l], it  
has first clearly been shown that the t,hree-wave combination of t,he “bad” 
reflections in the lattice of a germanium crystal, which give a slight decrease of 
the absorption coefficient, provides an essential strengthening of the anomalous 
transmission effect when the Bragg conditions are exactly fulfilled. This case 
was examined in [2] theoretically. It turns out that  in this case an analytical 
solution of the dispersion equation can be obtained for some values of the par- 
ameters characterizing the deviation from the Bragg conditions. In  [3 to  51, 
other particular cases are investigated which allow for an analytical solution of 
the dispersion equation. 

A general formulation of the problem has been given in papers [6, 71. The 
physical principles of t,he theory of the three-wa,ve case are the same as in the 
case of two strong waves. However, the wave field of X-rays, arising in a crystal 
in this case, has a much more complicated structure. The general analysis of 
the problem cannot be conducted completely in an analytical way, and nuiner- 
ical calculat,ions are necessary to obt,ain concrete results. 

One of the most interesting problems under consideration is the effect of 
anomalous transmission. Naturally, the question arises to  what extent the 
presence of the third wave can amplify this effect,. The particular case that the 
direct interaction between diffracted waves is absent, has been analysed in 
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papers [2, 6, 71. However, in the general case this problem has not been ex- 
amined. The present work is devoted, mainly, to the analysis of the Borrmann 
effect in the case of three-wave diffraction. 

In  Section 3, the derivation of the dispersion equation is given in an invariant 
form. The method of the derivation differs from that developed by Ewald and 
Heno [ G I ,  and it is convenient also for the multiple-wave problem for more than 
three waves. 

The analysis of the Borrmann effects in an arbitrary case of three-wave dif- 
fraction requires the use of numerical methods for the solution of the dispersion 
equation. For  finding the minimal absorption coefficient, it is necessary to con- 
sider, generally speaking, the whole region of values of the parameters charac- 
terizing the deviation from the Bragg conditions. A much more simple method 
for estimating the absorption minimum is offered in Section 3. 

In  Section 4, the passage from the two-wave case to the three-wave case is 
examined. In  Section 5,  the general properties of the dispersion surface and of 
a special point are considered. 

2. Derivation of the Dispersion Equation 

To describe the electromagnetic field of X-rays inside a crystal, we use Max- 
well's equations for the electrical field vector. In  terms of space and time Fou- 
rier components E(k ,  0)) we get 

where x = o/c,  c is the light veIocity, j(k, o) the Fourier component of 
the current density. The expression for j ,  which takes into account all 
possible interactions between the electromagnetic wave and the crystal, has 
been obtained by Afanasev and Kagan [12]. In the usual approximations, we 
have 

where x is 4n times the polarizability of a crystal, K h  is 2n times the reciprocal- 
lattice vector. 

Let a plane wave with vector x fall on a crystal in the form of a plate. Inside 
the crystal the space dependence of the field is determined by the vector k, = 
= x + xcon/y0, where n is the inner normal to  the entrance surface, yo = 
= kon/[kol. If the orientation of the crystal is such that two systems of planes 
(with the reciprocal-lattice-vectors Ell and K,)  are near the Bragg position, then 
we can replace approxiinately the general set (2.1) by the set of three vector 
equations for the amplitudes En = E(kh, o), h = 0,  1, 2: 
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Generally speaking, the transverse character of X-rays inside the crystal is 
not conserved. However, the longitudinal coinponents are by a factor of x 
sinaller than the transverse ones, and they inay be neglected. Nevertheless, it 
is convenient to preserve the last terms on the left-hand side of (2.3) and to con- 
sider formally the polarization of the electrical field to be arbitrary. Then (2.3) 
becomes a set of nine equations for the Cartesian coinponent,s of the vectors Eh. 
I ts  determinant must be equal to zero for the existence of a nontrivial solution 

= 

= 0 .  (2.5) 

t o  + 1 XOl x o z  To xo, t o  X O l  X02 

Xi0 ti X i 2  Xi0 Ti 4- 1 x i0  71 Xiz . (2.7) 
x z o  X2l T2 x z o  X Z l  721 X z o  Xr1 ZZ + 1 

F = ~ 0 1 ~ 0 2 4 2  
where 

Analogously, considering other particular cases 

2. so = s, 1 s, 
3. so = s2 1 s1 

4. so 1. s, = s2 

5. so = s1 = s2 
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we easily find 

A3 = 
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To X O l  x 0 2 '  

X I 0  TI X12( '  

where 

(2.10) 

(2.11) 

1x20 xu t 2  I 
As a result, according to (2.6), (2.8), (2.10), the dispersion equation has the 

form 
A(&,) = d3[s3d3 + ( 4 1  - s3) tad01 + ( s i z  - s3) ~ i A 0 2  + 

+ b212 - s3) T o 4 2 1  + -Q240,402412 = 0 9 (2.12) 
where 

s3 = solsozs12 , l-22 = 1 - s2 o1 - si2 - sy9 + 2s3 = ( S ~ [ S ~ X S ~ ] ) ~ .  (2.13) 
The form of the dispersion equation obtained differs from that given by Ewald 

and Heno [6]. However, one can verify directly that these equations are identi- 
cal. We think that the derivation presented above is a subject of independent 
interest because it can be useful in the n-wave case (n  > 3) also, while the 
Ewald method is inconvenient even in the four-wave case [7 ] .  

Moreover, the dispersion equation in the form (2.12) is convenient also in 
cases when the parameter -Qz is close to zero. In  these cases, for the solution of 
the problem, we consider the last term on the Iefthand side of the equation to 
be small and treat it as a perturbation. In  the zeroth approximation the solu- 
tion of (2.12) is reduced to finding the roots of a third degree polynomial only. 

The parameter f2 strictly equals zero when the three vectors so, sl ,  and s, lie 
in the same plane. Consequently, all cases which are close to this one can be 
investigated by means of the scheme outlined above. 

3. Estimation of the Minimal Absorption Coefficient 

One of the principal problems of the dynainical theory of X-ray diffraction 
is to find the points on the dispersion surface which correspond to a strong de- 
crease of the absorption coefficient, that is to search for the cases where the 
Borrmaiin effect is realized most strongly. 

For finding the minimal absorption coefficient ,ugln, it is necessary to examine 
all values of a,, a,, and this is a rather hard work. Therefore it is interesting to 
find a way of estimating pgln without solving the total dispersion equation. 

We write the set of equations (2.3) considering (2.4) in the form 
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Here the notations are taken from [ 121. The matrixes i, and ii, connected with 
the real and imaginary parts of the atomic formfactor f,, are hermitean matrices 
to a good approximation. They are complex in a crystal with two and more 
atoms in the unit cell. 

We multiply (3.1) by EX and take the sum over h 

Then we separate the equation (3.3) into real and imaginary parts. Because the 
inatrixes (i, -a) and ^xi are hermitean, the first tern1 on the left-hand side 
of (3.2) is real, and the second one is purely imaginary. Therefore 

(3.4) 

(3.5) 

Here to = E; + i~:. The formulae (3.3),  (3.4) determine the real and imaginary 
parts of the eigenvalues of the set (3.1) through its eigen vectors. 

We are interested in the minimal value of the absorption coefficient p$$n = 
= B x E & ~ .  This value is determined hy the niininium of the right-hand side of 
equation (3.5) under the condition that the wave field amplitudes Ell satisfy 
the transverse condition S h E h  = 0 and (3.1).  \Ve neglect the requirement that  
the amplitudes satisfy (3.1) for the estimation of the minimal value of 8:. Then 
we, naturally, get the lower limit only for which we denote as E&,,. The 
knowledge of this limit gives u s  the possibility to estimate the magnitude of the 
Borrmann effect. Moreover. as it shall he shown below this limit lies near to  the 
true value of in a large number of cases. 

For finding E"&,l,l, we take the deriratire of the right-hand side of (3.5) with 
respect to  EX equal to zero 

According to  (3.5) and (3.6), we obtain 

(3 .7)  

Consequently E&,lin is the minimal eigenvalue of the set ( 3 . 7 )  which differs from 
the general set (3.1) by the substitution of by xilblb, and by the absence of a,,. 

The solution of the set (3.7) is a inuch simpler problem. In this case, the dis- 
persion equation has r e d  coefficients. Morevover, one must do the calculation 
only once without analysing the dependence of E ;  on the parameters sl, a2. On 
the other hand, all results, obtained in the previous section for the general set 
(3.1), apply to  the solution of the set (3.7). Particularly, the eigenvalues of this 
set are the roots of equation (2.12) with a1 = a2 = 0 and x l , ~  = Xjhh,. 

5 physlca (a) %/I 
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As an example of the application of the method developed above, we consider 
the symmetrical Laue-Laue case, B1 = t!lz = 1, for a crystal with an inversion 
centre. 

In  such crystals, as it can be verified directly, the relation 
(3.8) XOlXlZxU, = xlOxOZX21 == x l x 2 x 3  

is satisfied. Here and later on we use the following abreviations: 
x o  = Xoa J X l  = J x X  7 x 2  = dxo2xzo  7 (3.9) 

~3 = Jxlzx21 7 ~1 = 501 3 8, = 802 ) 53 = 512 . 
(We shall assume the principal root to have a positive imaginary part.) In 
acc0rdanc.e with (3.8), the dispersion equation (2.12) depends on four quantities 
xlk only. Because the matrix xilklk# is hermitean, the corresponding quantit,ies 
Xih are purely real. 

For an  estimate of the quantity ,&:I,,, it is interesting t,o compare it with the 
value of the two-wave minimal absorption coefficient pg:,, for the same reflec- 
tions. As it is well known, in the symmetrical Laue-case, = 1, 

&?n(h, h') = X ( X 0 ;  - 1/Xhh'Xh'h'') = %(Xi0 - Xilk+h') * (3.10) 
Without restriction of generality (cf. Section 5) we can assume 

Xi1 > Xi2 > x i 3  . (3.11) 
Then the two-wave minimal absorption coefficient is realized on the first reflec- 
tion. Therefore i t  is convenient to  introduce the new quantity E = x i 0  - xil - 
-2.F; which directly determines the difference between the three-wave minimal 
absorption coefficient and the two-wave one, namely, 

pL',"L(O, 1) - = XE . (3.12) 
In accordance with the above remarks we obtain from (2.12) the following 

equation for E :  

d()'ih, E )  = ( E 3  -- 3xi1E2 + BE + C )  [(I - Q2) ( E 3  f 3Xi1E2) f B 1 E  f CI] + 
2 + Q ~ E  ( E  + 2~ i1 )  (E' + 2 ~ i 1 ~  + $1 - x?z) (8, + 2xilE + ~ ? l  - xis) z= 0 > (3.13) 

where 

(3.14) 

The nunierical solution of equation (3.13) is not difficult because the function 
d(xih, E )  is real. 

It is an interesting question whether positive roots of equation (3.13) are 
possible. Qualitatively this question is easily investigated directly. Indeed, 
according to (3.11), we see that the second term in (3.13) is always positive for 
positive E ,  and t,he first one has a t  least one positive root, if xi2 $: xis, because 
B > 0, but C < 0 in this case. Consequently, under this condition, (3.13) has 
always one positive root, and this root is the larger the larger the asymmetry 
and the smaller the parameter Q2. If x i 2  = ~ i 3 ,  then no positive roots exist, 
the maximum root equals zero. It is easy to understand, that the estimate is 
exact in this case, because the two-wave minimum is always reached in the limit 

I R = 2xt - x i 2  - x i 3  C = - x i l ( x i 2  - xis)' 9 

2 
~1 = 2x?1 (1 - s3 - 0') + ($1 - x i 2 )  st + (xt ,  - x?3) 5:: , 
ci = Xil[(x?l - &2) 8: + ($1 - x i 3 )  s: - 2(& - X12xi3) s3i * 

2 

oLzl + 00. 
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4. Passage from Two-Wave to Three-Wave Case 
As it  has been shown in the previous section, if the diffraction of X-rays takes 

place on two systenis of phnes simultaneously, under certain conditions a n  
additional decrease of the anomalous absorption coefficient occurs. It is obvious 
that  the point of the minimum of the three-wave absorption coefficient $3) lies 
in the central region of the dispersion surface, la,/, \az/ 5 IxOl, and the depend- 
ence of ,d3) on al, a, is quadratic near this point. However, in the area far from 
the minimal point 

The case la,l > lxoi is of special interest because i t  gives us a possibility to 
analyse clearly the passage from t,wo-wave to  three-wave case. 

We write equation (2.12) in the form of a power series of t, and use the abre- 
viations (3.9) 

where 

is the dispersion polynomial of the two-wave case, and 
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(3) depends on sl, a, in a more complicated way. 
) p, 

Aka) = m & O ,  TI) + t z m t o ,  T1) + DO(t0, TI) = 0 7 

Dz = ( t o %  - xl) ( t o t 1  - x2s3 

(4.1) 

(4.2) 

D1 = (tot1 - x:) (2x1xzx393 - to&; - Z,x;s;) + (ZOT1 - z,x:s:) x 
x (2x1xZx3 - t O d  - zlxi) - .n2(2~1~Zx37;0t1 - zOx:x: - 71x%) 9 (4'3) 

DO = (2x1xZx3 - zox: - zlx;) (2x1x~x3s3 - toxisi - + 
+ .nzx:x; (Tot1 - x3 . (4.4) 

Here we use the relation (3.8) which is fulfilled for a crystal of Ge-type. 
According to  (2.4), in the limit IazJ > Ixhl we can assuine t, = -s2 with 

good accuracy. Then the roots of the dispersion equation are determined by the 
first term in the right-hand side of (4.1). These root,s represent four two-wave 
branches, that  is roots of the equation Dz(zo,zl) = 0, a.nd two branches with 
a normal absorption coefficient. We are interested in the addition to  the 
two-wave solutions, which we call Zoj .  j = 1, 2,  3, 4. We write t o j  = ?oj + E,, 

where E ,  is a small addition, and substitute i t  into (4.2) to  (4.4). We can restrict 
ourselves to  firsbdegree terms in E~ because we have I E , ~  +0 in the liniit laz! -03. 

As a result, we obtain 
D, = EjBZ(?Oj) + . . . > D0,l = AO,l(?Oj) + E , & , l ( ~ O j )  + * - * * (4.5) 

The quantity E ,  determines directly the addition to  the two-wave absorption 
coefficient p$(j, al), namely, 

We have from (4.1) and (4.5) the relat,ion 
A,u(~) = p(3)(al, a,) - pi:)(j, al) = --xE;' . (4.6) 

1 (-4, - Aoa;') 
E, .  - - 

I -  n, (B2 - B,al + (4.7) 

Let us consider the case A ,  $: 0 and B, =+ 0. Then we obtain from (4.7) that  
Ap(3) is always positive for a certain sign of and negative for the opposite 
sign. The analogous result can be easily obtained also for the two branches with 
normal absorption coefficient. I n  the central region of the dispersion surface 
(when (aZ( is small) the lower two-wave branches turn into the upper ones and 
also into branches with normal absorption coefficient when (&,I 9 IxAl, and vice 
versa. Moreover, we obtain that the ininiinuin and the maximum of the three- 
wave curves p(3)(0r2) are always snialler and larger, respectively, than the two- 
wave ones with the same al. 
5' 
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The addition to the two-wave branch with minimal absorption coefficient 
(Borrmann-effect) is more interesting. Below we shall consider this case in more 
detail. For the sake of simplicity we shall not write the index j .  The interesting 
solut,ion satisfies the relation 

% ?  - a 
0 1 - 2 1 .  

The coefficients in (4.7), according to (4.8), are equal to 

B, = 2t~T (1 - s:) , 

(1  - X ) 2  A,  = 
X 

where 

For x = 1 it 

(1 - x)2 
- X b X 3  ( 1  - 8: - Q Z )  1 

. I  

zero. In  this case the two-wave value of z,, 

2t = .o + 71 ) X 

follows from (4.9) that the 

- - 2  - To-% 
XlX2 

(4.10) 

coefficients A, and A, strictly equal 
is strictly conserved for all as and j3,, . -  

and this result, naturally, does not depend on the Eondition 1a21 > Ixil .I 
Now we assume a1 = 0, p1 = 1, but x2 =+ x3.  In this case all coefficients in 

(4.7) differ from zero. Therefore, for large values of la2( A,d3) is determined 
approximately by the expression 

If the condition (3.11) is fulfilled, then (4.7) determines the additional decrease 
in the minimal two-wave absorption coefficient. As i t  follows from (4.11), in 
this case the region of the three-wave dispersion surface with small absorp- 
tion coefficient is strongly stretched along the line a1 = 0 towards the side of 
positive a,. Moreover, according t o  (4.11), lAp(3)l is the larger, the stronger the 
asymmetry is and the smaller the parameter Qz. This is in accordance with the 
result of the previous section. 

6. General Properties of Dispersion Surface 

In this section we shall discuss the general properties of the dispersion surface 
&,(aI, a,), namely, the symmetry properties of the function &;(al, a2) and the 
question about the triply degenerate point on the dispersion surface. The evident 
consideration of this properties give us in some cases a possibility to understand 
physically the experimental results without solving the problem. It is essential 
also for the numerical solution of the dispersion equation. 

Taking into account (2.Y), (2.11)) one easily sees that the left-hand side of 
equation (2.12) is not changed when replacing the indices 0, 1, 2, respectively 
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by h, k, 1.  where h ,  k, 1 is some permutation of the indices 0, 1, 2. This is because 
the vectors k,, k,, k, enter (2.12) quite equivalently. Therefore all cases which 
differ from each other only by the permutation of these vectors, must have much 
in common. 

It is easy to  understand this generality physically. Indeed, from the experi- 
mental point of view the three-wave case is deterniined by  two systems of planes, 
tllat is the reciprocal-lattice vectors Kl and K,, which reflect the incident plane 
wave with the wave-vector x .  I n  fact, however, an unresolvable superposition 
of waves arises in the crystal bulk, the individual components of which turn one 
into another being reflected on three systenis of planes with the reciprocal- 
lattice vectors K,, K,  and K3 = K,  - Zil. Only the distances between these 
planes, tha t  is the niodiili of these vectors, are important. 

Let us consider, for the sake of simplicity, crystals of Ge-type. I n  this case 
we have, besides the zero Fourier component of the polarizahility, only three 
independent coefficients x h  = x(lIih/), ?L = 1, 2, 3, which are determined by (3.9). 
We notc that  the modulus of the structure amplitude depends on K h ,  of course, 
more complicately. However, this dependence can always be accounted for 
explicitly, and it does not change the conclusion given below. If all x h  are not 
equal then, permuting the indires, we have six different cases. The following 
table shows the accordance between them. The quantities in any column of the 
table are equal to one another 

The dispersion surfaces in all these cases show an one-to-one correspondence. 
We show how this correspondence is determined. For example, E, = E is 
a solution a t  any point (a1, a,, PI, 8,) = (A, ,  A, ,  B,, B2) for case 1 of (5.1). Then 
we can easily obtain the solution (2.12) a t  some point, of the space (al. a,, pl, p2) 
for case 2 from (5.1). Indeed, according to (2.4), we find for case 1 

2 E ,  

Passing to  case 2, we notice that  the following three values of t h  are sohitions 
of (2.12) 

(5.3) 

We use formula (2.4) once more and obtain the same solution E, = E ,  but a t  the 

The minimum of ~ b )  is inore interesting. It is easy to  understand that E; has 
the minimal value in cases of table (5.1) which correspond to  /?, < 1 and /?, < 1. 
However, the quantity &;/yo is constant for all cases. Therefore all cases have 
the same minimal value of the quantity &;/yo. 

Let us consider now the case of symmetrical Laue-Lane geometry. I n  this 
case the quantities = p, = 1 and E;  are the same for all cases in (5.1). Con- 

point (011, %, p,, p 2 ,  = (A,>Al ,  B,, 4). * 
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sequently, the imaginary parts of the dispersion surfaces &‘(al, a,) in these cases 
have the same region of changing and turn into one another by means of rota- 
tions and inversions. If two coefficients xh are equal or all three coefficients 
are equal, then the function &‘(al, a,) is invariable with respect to  these trans- 
formation. 

As an example, we consider the case (220), ( l l l ) ,  ( I l l ) .  According to the 
results of previous section, in t,his case the two-wave solution on (220) with the 
minimal imaginary part is conserved along the line a1 = 0. Moreover, because 
the cases 1 and 3 of (5.1) coincide, E; has the same values in the points (al, az) = 
= (Al,  A,)  and (a,, az) = ( -AI, A,  - A1). In  the completely symmetrical case 
(220), (022), (202), when x1 = xZ = x3, we obtain that the inininial iinaginary 
part of the two-wave solution on (220) is conserved along the three lines a1 = 0,  
az = 0,  a, = a,, and E; has the same value a t  six points of the plane (a1, a,). 

Finally, we note one interesting property of the three-wave dispersion surface. 
If one neglects the imaginary part) of the atomic form-factor, which is essential 
only for the absorption process, then always a point is on the plane a,, a2 in 
which the dispersion equation has a triply degenerate root. This fact does not 
depend on the parameters of the problem, namely, the geometry of the experi- 
ment and the structure of the crystal. It is obvious that in the vicinity of this 
point one may expect the unusual behaviour of the “pendellosung” effect. 

It is easy to  verify directly that the coordinates of this point are determined 
by the relation 

According to (2.4)) we obtain from (5.4) 

a1 = (5.5) ’ ‘ 1  - p?) - x;(Xjz - X;’JB;1)/X2X3 1 

n, = xh(1 - pa’) - x & ; ~  - X;’~;’)/X;X; . 
It must be noted that the point of degeneracy is absent when the structure 

amplitude for one of the reflections equais zero. It is easy to see that in this case 
one of the quantities a,, a, in (5.5) equals 03. As it follows from the results of the 
previous section, this point is the point of intersection of three straight lines 
along which the two-wave solution with the minimal imaginary part is conserved. 
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