A. M. AFanasiv and V. G. Korx: Borrmann Effect in the Three-Wave Case 61

phys. stat. sol. (a) 28, 61 (1975)

Subject classification: 1.1; 22.1.1

1. V. Kurchatov Institute of Atomic Energy, Moscow

Borrmann Effect in the Three-Wave Case
of X-Ray Diffraction

By
A. M. AraNastv and V. G. KorN

The general properties of the dispersion surface in the three-wave case are considered.
A method of the derivation of the dispersion equation is suggested in an invariant form con-
venient for the concrete analysis. An analysis of the amplification of the anomalous trans-
mission (Borrmann) effect in the three-wave case and a simple way for the estimation of this
effect without large numerical calculations are given. The passage from two- to three-wave
case is considered. This analysis allows to predict a general form of the dependence of the
absorption coefficient on the orientation of the incident beam.

PacemoTpenn obmue cpoiicTBa JHCHIEPCUOHHOIT ITOBEPXHOCTH B TPEXBOJHOBOM
ciayyae. IIpennomed MeToN] BHIBOA RUCIIEPCHMOHHOI0O YDABHEHUA B MHBapMaHTHOMU
dopme, ynoOHoM nyiA aHaau3a. AHaanaupyercsa ycHieHHe aderTa aHOMAJIBHOTO
npoxoxneHns (agdexnra Bopmana) B TpeXBOJHOBOM CJlyuae M HPeNJIoxeH IPOCTOoif
crnocod OueHKM 3TOTO dPPenTa, He TpeOylomUH OONBLIOTO YUCIAEHHOrO CYeTa.
PaccmoTpeH mepexon 0T TpeXBOJIHOBOTO CJIVYAA K IBYXBOJHOBOMY , YTO I103BOJIAAET
npeacKasath 001N X0 3aBUCUMOCTH Koa(PuiMeHTa IOFNOUIEHUs OT OpHeHTalnu
Iajgamllero nyyka.

1. Introduction

In recent years, interst in three-wave diffraction of X-rays has continuously
increased. Many papers have been published in which this phenomenon has
been investigated both experimentally and theoretically [1 to 11]. In [1], it
has first clearly been shown that the three-wave combination of the ‘“bad”
reflections in the lattice of a germanium erystal, which give a slight decrease of
the absorption coefficient, provides an essential strengthening of the anomalous
transmission effect when the Bragg conditions are exactly fulfilled. This case
was examined in [2] theoretically. It turns out that in this case an analytical
solution of the dispersion equation can be obtained for some values of the par-
ameters characterizing the deviation from the Bragg conditions. In [3 to 5],
other particular cases are investigated which allow for an analytical solution of
the dispersion equation. :

A general formulation of the problem has been given in papers [6, 7]. The
physical principles of the theory of the three-wave case are the same as in the
case of two strong waves. However, the wave field of X-rays, arising in a crystal
in this case, has a much more complicated structure. The general analysis of
the problem cannot be conducted completely in an analytical way, and numer-
ical calculations are necessary to obtain concrete results.

One of the most interesting problems under consideration is the effect of
anomalous transmission. Naturally, the question arises to what extent the
presence of the third wave can amplify this effect. The particular case that the
direct interaction between diffracted waves is absent, has been analysed in
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papers [2, 6, 7]. However, in the general case this problem has not been ex-
amined. The present work is devoted, mainly, to the analysis of the Borrmann
effect in the case of three-wave diffraction.

In Section 2, the derivation of the dispersion equation is given in an invariant
form. The method of the derivation differs from that developed by Ewald and
Heno [6], and it is convenient also for the multiple-wave problem for more than
three waves.

The analysis of the Borrmann effects in an arbitrary case of three-wave dif-
fraction requires the use of numerical methods for the solution of the dispersion
equation. For finding the minimal absorption coefficient, it is necessary to con-
sider, generally speaking, the whole region of values of the parameters charac-
terizing the deviation from the Bragg conditions. A much more simple method
for estimating the absorption minimum is offered in Section 3.

In Section 4, the passage from the two-wave case to the three-wave case is
examined. In Section 5, the general properties of the dispersion surface and of
a special point are considered.

2. Derivation of ithe Dispersion Equation

To describe the electromagnetic field of X-rays inside a crystal, we use Max-
well’s equations for the electrical field vector. In terms of space and time Fou-
rier components E(k, w) we get
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Ek —1—jk — —k(kEk = .
Bk, 0) — ik ©) = k(kE(k,0)) =0, (21)
where » = wfc, ¢ is the light velocity, j(k, w) the Fourier component of
the current density. The expression for j, which takes into account all
possible interactions between the electromagnetic wave and the crystal, has
been obtained by Afanasev and Kagan [12]. In the usual approximations, we
have

. )
J(k’ 6()) = E %‘ X (k’ kh) E(kh: (U) > kh =k + I(h ’ (22)

where y is 47 times the polarizability of a crystal, K; is 2x times the reciprocal-
lattice vector.

Let a plane wave with vector a fall on a crystal in the form of a plate. Inside
the crystal the space dependence of the field is determined by the vector k, =
= % -+ negN|y,, where n is the inner normal to the entrance surface, y, =
= kon/|k,|. If the orientation of the crystal is such that two systems of planes
(with the reciprocal-lattice.vectors K, and K,) are near the Bragg position, then
we can Teplace approximately the general set (2.1) by the set of three vector
equations for the amplitudes E, = E(k,, ), h =0, 1, 2:

ToEy + xoE1 + YooEs 1 So(SeEg) =0,
Y10Bo + T By + 1By + Si(8:E) =0, (2.3)
XooEo + xuE1 + ToFy + Sy(s,E,) =0,

where
1 3 w -+ K2 —
Th:Xoo_gen, 81;:50‘/; +ﬂ—(;, O‘h:_( y’; — (2.4)

ﬂh =YV, Ya=8M, 8= LT e = x{Bns ky) .
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Generally speaking, the transverse character of X-rays inside the crystal is
not conserved. However, the longitudinal components are by a factor of x
smaller than the transverse ones, and they may be neglected. Nevertheless, it
is convenient to preserve the last terms on the left-hand side of (2.3) and to con-
sider formally the polarization of the electrical field to be arbitrary. Then (2.3)
becomes a set of nine equations for the Cartesian components of the vectors E,.
Its determinant must be equal to zero for the existence of a nontrivial solution

(To + $080) o1 Zoz $0s8 O O sgsg O O
10 (T Fsist) y O sisy O O sfsi O
Xeo X (Ta+s2s3) 0 O sish O O 3
56 0 0 (1o + S88) xor oz Shs5 O O
Algg) =0 sisT 0 x4 (ru+slst) 2 O sfsi 0=0. (2.5)
0 O 83 yp0 ) (o + s¥s8) 0 O sisd
8085 0 O st O O (794 $65D) xor oo
0 sist 0 O sis{ O i (71 + i) Jie
0 0 s3s3 O O s36% ypp 2mx (7a + 8252)

52

The determinant A(g,) does not depend on the choice of the coordinate system.
Therefore, A(g,) depends on the quantities sp, = (838y) only, and this depend-
ence, as it is easy to understand from the form of (2.5), has the form

Aley) = F + Gys?y - Gysy + Gy + HoySorsia - (2.6)

For a discussion of the coefficients in (2.6) we consider a few simple particular
cases, where it is easy to calculate the determinant A(g,) directly. For example,
let us consider a case in which the vectors s,, s;, and s, are mutually perpendicu-
lar. In this case, we can choose the axes of the Cartesian coordinate system
along these vectors, so that s§ = 1, s{ =1, s5 = 1, and the other components
of the vectors are equal to zero. Then, from (2.5), we get

o+ 1 Yoo X |To Ao Xo2| |%o Xor  Xoo
Algg) =| 7o T X Tl ol xe T Xz |- (2.7)
X20 Xer Ta| [X20 X1 Tzi Yoo N1 To+ 1

On the other hand, from (2.6) it follows that the expression (2.7) determines
the coefficient . We shall be interested only in those roots which are connected
with the transverse components of the fields. It is obvious in advance that these
roots are small and are of the same order as y. Therefore, we shall retain in
(2.7) terms of the order of the least degree (six) of y. As a result, we obtain

F = ApApAys (2.8)
where
A = o X\ (2.9)
Xhw  Tw

Analogously, considering other particular cases
2.8 =8 18, 4. 8, | 8, =8,

3.5,=58, 1| s 5. 8, =8, =s,
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we easily find

. F 4+ G, =144,

F 4+ G, = 1,454, ,

F + GO - T0A12A3 >
F4+G,+6G, +G,+H =42,

(2.10)

oL w0 1o

where
To  Xor Xo2
Ay = Yo T1 o Xiel- (2.11)
Yoo Xm Tp
As a result, according to (2.6), (2.8), (2.10), the dispersion equation has the
form

Aleg) = Ay[$345 4 (85, — %) 1,401 + (85 — %) 11y +
+ (812 — %) Tode] + 224y de 1, =0, (2.12)

where
8% = SiSpaS1z» £2% = 1 — i — 83y — 5%y + 28 = (Sy[8; X8 ])% . (2.13)

The form of the dispersion equation obtained differs from that given by Ewald
and Heno [6]. However, one can verify directly that these equations are identi-
cal. We think that the derivation presented above is a subject of independent
interest because it can be useful in the n-wave case (n >> 3) also, while the
Ewald method is inconvenient even in the four-wave case [7].

Moreover, the dispersion equation in the form (2.12) is convenient also in
cases when the parameter 2 is close to zero. In these cases, for the solution of
the problem, we consider the last term on the lefthand side of the equation to
be small and treat it as a perturbation. In the zeroth approximation the solu-
tion of (2.12) is reduced to finding the roots of a third degree polynomial only.

The parameter (2 strictly equals zero when the three vectors s,, s;, and s, lie
in the same plane. Consequently, all cases which are close to this one can be
investigated by means of the scheme outlined above.

3. Estimation of the Minimal Absorption Coefficient

One of the principal problems of the dynamical theory of X-ray diffraction
is to find the points on the dispersion surface which correspond to a strong de-
crease of the absorption coefficient, that is to search for the cases where the
Borrmann effect is realized most strongly.

For finding the minimal absorption coefficient u{?) , it is necessary to examine
all values of &y, &y, and this is a rather hard work. Therefore it is interesting to
find a way of estimating u(®, without solving the total dispersion equation.

We write the set of equations (2.3) considering (2.4) in the form

2¢,
2 pwEw = (— + 0‘);) E,. 3.1
14 ﬂh

The matrix of the coefficients of (3.1) yuw is known to have the following form

(cf., for example, [12]):

Ark' = Yeawr + Vi =

477, , oy .
— — 2 S fikw — Bal) + ifj] exp itk — Ka) @y — M(lkw — Ral)} . (3.2)
07
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Here the notations are taken from [12]. The matrixes %, and ¥;, connected with
the real and imaginary parts of the atomic formfactor f;, are hermitean matrices
to a good approximation. They are complex in a crystal with two and more
atoms in the unit cell.

We multiply (3.1) by EF and take the sum over A

. 1
IZh; E}l*(XrILh’ _ ahahh’) Eh’ + 1 Z Elz’rxihh’Eh’ = 280 2 IEhlzﬁ— (33)

123 h h

Then we separate the equation (3.3) into real and imaginary parts. Because the
matrixes (¥, — «) and %; are hermitean, the first term on the left-hand side
of (3.2) is real, and the second one is purely imaginary. Therefore

2 ElT(thh’ - O‘Iléhh’) Eh'

20 =" , 3.4

0 %1 lEh\Z ﬂ;l ( )
2: EfyunEy

Qer — T (3.5)

| E? Bt
h

Here ¢y = & -+ teg. The formulae (3.3), (3.4) determine the real and imaginary
parts of the eigenvalues of the set (3.1) through its eigen vectors.

We are interested in the minimal value of the absorption coefficient u(3), =
= 2xeomin- This value is determined by the minimum of the right-hand side of
equation (3.5) under the condition that the wave field amplitudes E, satisfy
the transverse condition s,E; = 0 and (3.1). We neglect the requirement that
the amplitudes satisfy (3.1) for the estimation of the minimal value of ;. Then
we, naturally, get the lower limit only for ggmiy, which we denote as Zgin. The
knowledge of this limit gives us the possibility to estimate the magnitude of the
Borrmann effect. Moreover, as it shall be shown below this limit lies near to the
true value of ggmin in & large number of cases.

For finding &miy, we take the derivative of the right-hand side of (3.5) with
respect to Ej equal to zero

* Al
6E;f = hh” Kinn Lop 2 lEhIZ ﬂ;l ﬂh
A

Ext| SEA B0 =0.  (3.6)

According to (3.5) and (3.6), we obtain
2 Xihh’Eh’ = 2_69‘ Eh . (37)
14 ﬂn
Consequently &, is the minimal eigenvalue of the set (3.7) which differs from
the general set (3.1) by the substitution of yu by yiu and by the absence of «,.
The solution of the set (3.7) is a much simpler problem. In this case, the dis-
persion equation has real coefficients. Morevover, one must do the calculation
only once without analysing the dependence of ¢y on the parameters a;, a,. On
the other hand, all results, obtained in the previous section for the general set
(3.1), apply to the solution of the set (3.7). Particularly, the eigenvalues of this
set are the roots of equation (2.12) with «; = &, = 0 and yuw = yipp-

5 physica (a) 28/1



66 A. M. Aranasgv and V. G. Koan

As an example of the application of the method developed above, we consider
the symmetrical Laue-Laue case, f; = 8, = 1, for a crystal with an inversion
centre.

In such crystals, as it can be verified directly, the relation

XorX12X20 = X1oXo2X21 = X1Z2X3 (3.8)
is satisfied. Here and later on we use the following abreviations:
Xo = Xoo> X1=— 1/2017{10 > Xe = VonXzo . (3.9)

Xs = VXweXan>» St =Spm> S =S S3=8p-

(We shall assume the principal root to have a positive imaginary part.) In
accordance with (3.8), the dispersion equation (2.12) depends on four quantities
#u only. Because the matrix yy, is hermitean, the corresponding quantities
¥ir, are purely real. _

For an estimate of the quantity ,2‘,22,1, it is interesting to compare it with the
value of the two-wave minimal absorption coefficient 4(2) for the same reflec-
tions. As it is well known, in the symmetrical Laue-case, § = 1,

Pk, B') = w(xo0 — Vimeawn”) = %o — Linin) - (3.10)
Without restriction of generality (c¢f. Section 5) we can assume
xin > Xiz > Lis - (8.11)

Then the two-wave minimal absorption coefficient is realized on the first reflec-
tion. Therefore it is convenient to introduce the new quantity ¢ = yip — %11 —
—28; which directly determines the difference between the three-wave minimal
absorption coefficient and the two-wave one, namely,

Pomin(0, 1) — fisgln = ¢ . (3.12)

In accordance with the above remarks we obtain from (2.12) the following
equation for e:

Alyin, €) = (€% — 3gue® + Be + C) [(1 — Q%) (2 + 3yue®) + Bie + 1] +
+ Q2% (¢ + 2y0) (2 + 2xue + xh — 7i) (€% + 2qne + yh — xh) =0, (3.13)
where ‘
B =2y — yie — xis » C = —yulyizs — x13)%
By =2y5 (1 — 6 — 2% + (¢ — xb) si + (rh — xds) 83, (3.14)
Oy = zullrh — ) 82 + (h — 25) 83 — 20¢% — xizzss) %1 -
The numerical solution of equation (3.13) is not difficult because the function
A(yn, €) is real.

It is an interesting question whether positive roots of equation (3.13) are
possible. Qualitatively this question is easily investigated directly. Indeed,
according to (3.11), we see that the second term in (3.13) is always positive for
positive ¢, and the first one has at least one positive root, if o =F yis, because
B > 0, but ¢ < 0 in this case. Consequently, under this condition, (3.13) has
always one positive root, and this root is the larger the larger the asymmetry
and the smaller the parameter Q2. If yi2 = yi3, then no positive roots exist,
the maximum root equals zero. It is easy to understand, that the estimate is
exact in this case, because the two-wave minimum is always reached in the limit
0y — cO.
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4. Passage from Two-Wave to Three-Wave Case

As it has been shown in the previous section, if the diffraction of X-rays takes
place on two systems of planes simultaneously, under certain conditions an
additional decrease of the anomalous absorption coefficient occurs. It is obvious
that the point of the minimum of the three-wave absorption coefficient u® lies
in the central region of the dispersion surface, |y}, |as] < |y0l, and the depend-
ence of u® on &y, &, is quadratic near this point. However, in the area far from
the minimal point, u(® depends on a,, &, in a more complicated way.

The case |oy| >> 70! is of special interest because it gives us a possibility to
analyse clearly the passage from two-wave to three-wave case.

We write equation (2.12) in the form of a power series of 7, and use the abre-
viations (3.9)

Ale) = 13D5(t, 1) + 7oDi(Tg, 1) + Dylg,73) = 0, (4¢.1)
where
D, = (zgry — 1) (%o7y — x181) (4.2)
is the dispersion polynomial of the two-wave case, and
Dy = (o1 — 21) (2tadexs5® — Toxss3 — T1xash) + (TeTy — Taxisi) X
X (2xaxexs — Toxs — Taxs) — QX 2paxexsTaTs — Toxids — Taixe) » (4.3)
Dy = yisars — Toxs — Tuxz) (201xeXs8® — Tox3s5 — Tuxass) +

+ s (T — x3) - (44)
Here we use the relation (3.8) which is fulfilled for a crystal of Ge-type.
According to (2.4), in the limit |o,) > [yo| we can assume 17, = —a, with

good accuracy. Then the roots of the dispersion equation are determined by the
first term in the right-hand side of (4.1). These roots represent four two-wave
branches, that is roots of the equation D,(ty, ;) = 0, and two branches with
a normal absorption coefficient. We are interested in the addition to the
two-wave solutions, which we call 7y;, j =1, 2, 3, 4. We write 1o; = To; - ¢,
where g; is a small addition, and substitute it into (4.2) to (4.4). We can restrict
ourselves to first-degree terms in g; because we have |g;] —0 in the limit |a,] — co.
Ag a result, we obtain

D, = &;By(To;) + - - -, Doy = Ao, 1(Toj) + &;Bo1(Toy) +---.  (4.5)
The quantity &; determines directly the addition to the two-wave absorption
coefficient u{3(j, &;), namely,

Au® = u(ay, 05) — @G, o) = —ef - (4.6)
We have from (4.1) and (4.5) the relation
1 Ay — Ags?t
g (dy o%2 ) @7

&y (By — B! + Byxz?)

Let us consider the case 4; = 0 and B, == 0. Then.we obtain from (4.7) that
Au® is always positive for a certain sign of o, and negative for the opposite
sign. The analogous result can be easily obtained also for the two branches with
normal absorption coefficient. In the central region of the dispersion surface
{when |oy| is small) the lower two-wave branches turn into the upper ones and
also into branches with normal absorption coefficient when |o,| > {0|, and vice
versa. Moreover, we obtain that the minimum and the maximum of the three-
wave curves u®(x,) are always smaller and larger, respectively, than the two-
wave ones with the same «,.

5%
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The addition to the two-wave branch with minimal absorption coefficient
(Borrmann-effect) is more interesting. Below we shall consider this case in more
detail. For the sake of simplicity we shall not write the index j. The interesting
solution satisfies the relation

Ty = 13 - (4.8)
The coefficients in (4.7), according to (4.8), are equal to

By = 2153 (1 — s,

1
By = — 2ty 315 [2(92 — &) s+ séx} — 2308 + 29 (L — s — 0%,

1
By = g2 + s O3 + o) (st + st — 267

(4.9)
1 — x)?
4, = — (T)Zflzls (1 —s7 — 0%,
(1 — a)? 1
dy= " i (st 4 st 283),
where
U =Ty b Ty, ¥ =T, (4.10)

N Xaxe

For # =1 it follows from (4.9) that the coefficients 4, and 4, strictly equal
zero. In this case the two-wave value of 7, is strictly conserved for all &, and §,,
and this result, naturally, does not depend on the condition |a,| > |0l

Now we assume «; = 0, §;, = 1, but y, = y;. In this case all coefficients in
(4.7) differ from zero. Therefore, for large values of |a,| Au'® is determined
approximately by the expression

@ X (A = DN (gl m (I — 81— 0%
Ap o (Bz) = (x2 — x3) (12 — 23) T—s (4.11)
If the condition (3.11) is fulfilled, then (4.7) determines the additional decrease
in the minimal two-wave absorption coefficient. As it follows from (4.11), in
this case the region of the three-wave dispersion surface with small absorp-
tion coefficient is strongly stretched along the line a; = O towards the side of
positive x,. Moreover, according to (4.11), |Au®| is the larger, the stronger the
asymmetry is and the smaller the parameter 2. This is in accordance with the
result of the previous section.

5. General Properties of Dispersion Surface

In this section we shall discuss the general properties of the dispersion surface
£o(x1, &p), namely, the symmetry properties of the function &y(oy,x,) and the
question about the triply degenerate point on the dispersion surface. The evident
consideration of this properties give us in some cases a possibility to understand
physically the experimental results without solving the problem. It is essential
also for the numerical solution of the dispersion equation.

Taking into account (2.9), (2.11), one easily sees that the left-hand side of
equation (2.12) is not changed when replacing the indices 0, 1, 2, respectively
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by %, k, I, where k, k, 1 is some permutation of the indices 0, 1, 2. This is because
the vectors k, k,, k, enter (2.12) quite equivalently. Therefore all cases which
differ from each other only by the permutation of these vectors, must have much
in common.

It is easy to understand this generality physically. Indeed, from the experi-
mental point of view the three-wave case is determined by two systems of planes,
that is the reciprocal-lattice vectors K; and K,, which reflect the incident plane
wave with the wave-vector »#. In fact, however, an unresolvable superposition
of waves arises in the crystal bulk, the individual components of which turn one
into another being reflected on three systems of planes with the reciprocal-
lattice vectors K,, K, and K; = K, — K,. Only the distances between these
planes, that is the moduli of these vectors, are important.

Let us consider, for the sake of simplicity, crystals of Ge-type. In this case
we have, besides the zero Fourier component of the polarizability, only three
independent coefficients y» = y(|#]), & =1, 2, 3, which are determined by (3.9).
We note that the modulus of the structure amplitude depends on K,, of course,
more complicately. However, this dependence can always be accounted for
explicitly, and it does not change the conclusion given below. If all y, are not
equal then, permuting the indices, we have six different cases. The following
table shows the accordance between them. The quantities in any column of the
table are equal to one another

Loy xe 235 TosT1i T2
- X2 X1 X35 Tor Tos Ty
X X3 Xesy T T To (51)
- X2 X3 X5 Ta:Tos T1 s
s X3 X X2y T T To s
< X3 X2 K15 TaTy 7o -

The dispersion surfaces in all these cases show an one-to-one correspondence.
We show how this correspondence is determined. For example, g, = E is
a solution at any point (a, o, B, fs) = (44, A,, By, Bp) for case 1 of (5.1). Then

we can easily obtain the solution (2.12) at some point of the space (&, %3, 81, B2)
for case 2 from (5.1). Indeed, according to (2.4), we find for case 1
2F
Tg)l) = — 2, T(ll)z = Xo — B . Ay, - (5.2)

i

Sy CU = W o

Passing to case 2, we notice that the following three values of 7, are solutions
of (2.12)
) 2F

@) 5
o =y — 2F, T = d T
2,1

— 4y, . (5.3)

We use formula (2.4) once more and obtain the same solution ¢, = E, but at the
pOint (0‘1, %o, ,817 /32) = (A2: A1> BZ’ Bl)

The minimum of gy is more interesting. It is easy to understand that ¢y has
the minimal value in cases of table (5.1) which correspond to 8, < 1and §, < 1.
However, the quantity &gy, is constant for all cases. Therefore all cases have
the same minimal value of the quantity &;/y,.

Let us consider now the case of symmetrical Laue-Laue geometry. In this
case the quantities §; = B, = 1 and ¢q are the samne for all cases in (5.1). Con-
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sequently, the imaginary parts of the dispersion surfaces g (c;, &,) in these cases
have the same region of changing and turn into one another by means of rota-
tions and inversions. If two coefficients y, are equal or all three coefficients
are equal, then the function eg(xy, x,) is invariable with respect to these trans-
formation.

As an example, we consider the case (220), (111), (I111). According to the
results of previous section, in this case the two-wave solution on (220) with the
minimal imaginary part is conserved along the line «; = 0. Moreover, because
the cases 1 and 3 of (5.1) coincide, £y has the same values in the points («;, &) =
= (4,, 4,) and (x;, xy) == (—A;, Ay — A4;). In the completely symmetrical case
(220), (022), (202), when y; = ¥, = x5, wWe obtain that the minimal imaginary
part of the two-wave solution on (220) is conserved along the three linesa; = 0,
&y = 0, %; = &y, and &g has the same value at six points of the plane (o, «,).

Finally, we note one interesting property of the three-wave dispersion surface.
If one neglects the imaginary part of the atomic form-factor, which is essential
only for the absorption process, then always a point is on the plane o, o, in
which the dispersion equation has a triply degenerate root. This fact does not
depend on the parameters of the problem, namely, the geometry of the experi-
ment and the structure of the crystal. It is obvious that in the vicinity of this
point one may expect the unusual behaviour of the “pendellosung” effect.

It is easy to verify directly that the coordinates of this point are determined
by the relation

) =j%, Toly = 1,  Tols = Xa- (5.4)
3
According to (2.4), we obtain from (5.4)
oy = go(1 — B7%) — 110" — x"Br) 22t (5.5)
op = go(l — Ba") — z2(xs” — 2B uaxs -

It must be noted that the point of degeneracy is absent when the structure
amplitude for one of the reflections equals zero. It is easy to see that in this case
one of the quantities «,, &, in (5.5) equals co. As it follows from the results of the
previous section, this point is the point of intersection of three straight lines
along which the two-wave solution with the minimal imaginary part is conserved.
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