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Abstract — The experiments on multiple diffraction of X-rays in perfect crystals performed with the participa-
tion of the authors are reviewed. The experiments include direct measurements of anomalous transmission of
X-rays under the conditions of six-beam diffraction and the study of photoelectron yield under the conditions
of three-beam diffraction (a multibeam modification of the method of X-ray standing waves). Various
X-ray—optical arrangements for two-dimensional collimation, necessary for observation of multibeam interfer-
ence effects, are analyzed. Sufficiently good agreement between the experimental and calculated data confirms
the efficiency of the suggested solutions. These solutions are rather promising for the development of new non-
destructive methods for analyzing structure perfection of crystals and surface layers.

1. INTRODUCTION

The dynamical theory of X-ray diffraction devel-
oped at the beginning of our century is an outstanding
achievement of theoretical physics of that time. In
essence, the theory reduces to a self-consistent allow-
ance for the interaction of incident and diffracted X-ray
waves and the formation, as a result, of a unified wave
field in the crystal. The intensity of this field is space-
modulated and repeats the periodic structure of the
crystal lattice of a perfect crystal.

All of the interference effects of dynamical scatter-
ing of X-rays are directly related to the existence of this
wave field and its interaction with the atoms of the crys-
tal lattice. One of the main effects of this kind is anom-
alous transmission of X-rays and anomalous angular
dependences of the yields of secondary radiations (pho-
toelectrons, fluorescence, etc.). But the absence of suf-
ficiently large perfect crystals hindered experimental
study for decades of the effects predicted by the
dynamical theory.

The synthesis of crystals with a high degree of per-
fection gave a new impetus to studies of dynamical
effects in the simplest two-wave diffraction geometry,
where the reflection conditions are fulfilled only for
one system of crystallographic planes. As a result, new
methods for structure diagnostics of almost perfect sin-
gle crystals were developed, such as X-ray topography,
diffractometry, and various modifications of the
method of X-ray standing waves. The widespread use
of these methods provided the improvement of modern
technologies for growing various technically important
crystals, especially those used in microelectronics.

Multiple diffraction is a more complex case, where
the reflection conditions are fulfilled simuitaneously
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for two or more crystal planes. As a result, three and
more strong beams propagating in different directions
can arise in the crystal. The coherent superposition of
these beams is responsible for the formation of a com-
plex structure of the wave field, whose intensity is mod-
ulated in two directions. In principle, this provides bet-
ter conditions for the manifestation of interference
effects of X-ray scattering and their use for structure
diagnostics. A detailed description of the various possi-
ble cases of multiple diffraction can be found in the
fundamental work by Z.G. Pinsker [1].

The experimental study of the dynamical effects of
multiple diffraction has been hindered for many years
by a series of objective difficulties. First of all, it was
necessary to collimate an incident X-ray beam simulta-
neously in two directions (the so-called two-dimen-
sional collimation) with a high accuracy (of about 17).
In addition to the technical difficulties of its implemen-
tation, this collimation gives rise to a drastic decrease in
intensities (by several orders of magnitude in compari-
son with two-wave diffraction). Second, the goniomet-
ric devices used should provide the precision rotations
of the crystal about several (at least, two) axes. There-
fore, it is not surprising that the experiments in this field
became possible only recently mainly because of the
use of intense synchrotron radiation (SR).

Below we briefly review the main experimental
results obtained in our studies with the use of both con-
ventional X-ray sources in the Laboratory of X-ray
Optics and Synchrotron Radiation of the Institute of
Crystallography of the Russian Academy of Sciences
and also with the use of an SR source of the Photon
Factory (Tsukuba, Japan). The experiments were per-
formed with the participation of I.Yu. Kharitonov and
L.V. Samoilova from the Institute of Crystallography
and S. Kikuta and T. Ishikawa from the University of
Tokyo [2 - 6].
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Section 2 is devoted to the consideration of the main
equations of the multibeam dynamical theory of dif-
fraction and the methods of their solution. The methods
for solving the main problem of the multibeam X-ray
experiment (two-dimensional beam collimation) are
considered in Sect. 3. Section 4 deals with the results of
the first diffractometric measurements of beam intensi-
ties in anomalous transmission of X-rays under the
conditions of six-beam diffraction. For the first time, a
rather good quantitative agreement is achieved between
the experimental results and theoretical calculations.

The measurements of the yields of secondary radia-
tions under the conditions of multiple diffraction (the
multibeam modification of the method of X-ray stand-
ing waves) is an independent experimental problem.
Section 5 deals with the first measurements of the pho-
toelectron yield under the conditions of three-beam
X-ray diffraction. We also describe the method for cal-
culating the yields of secondary radiations in the multi-
beam geometry and compare the calculated and exper-
imental data.

The main disadvantage of the conventional two-
beam X-ray diffraction experiment is the loss of infor-
mation on phases. The method of X-ray standing waves
provides this information, but presents essential exper-
imental difficulties associated with the necessity of
measuring the yields of secondary radiations. Multiple
diffraction allows the solution of the phase problem
without the use of secondary processes. The optimum
method for solving the phase problem for almost per-
fect single crystals is described in Section 6.

2. THEORY

The dynamical theory of X-ray diffraction was first
developed as a phenomenological theory (the history of
the problem is considered in detail elsewhere [1, .
Later, a rigorous theory was developed. It was
described most consistently by Kagan and Afanas’ev
[8]. The theory is based on the Maxwell equation for
the electric-field amplitude E(k, ) of an X-ray wave in
the reciprocal space, i.e.,

(¥ - B E(Kk, ) - k [k - E(k, 0)]

= (4niw/c) jk, ®),

where K = o/c = 2r/A, and A is the wavelength. The
right-hand side includes the Fourier component of the
induced-current density j(k, ®) calculated rigorously as
the quantum-mechanical average of the current-density
operator over the crystal states in the radiation field.
With due regard for a weak interaction of X-rays with
the crystal, the second term in (1) (nontransversity) can
be ignored; then, one can calculate the current in the
approximation linear with respect to the field. In the
general case, we obtain for a strictly periodic crystal

(D

jike ©) = (FK/4min) Y XKy, K E(K,, ©), ()
mj
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where k,, = ko + h,,, h,, is the mth reciprocal-lattice vec-
tor multiplied by 27, and %”(k,, k,,) is the Fourier com-
ponent of the complex tensor of crystal polarizability
that can be calculated with due regard for all the pro-

cesses of X-ray interaction with the crystal (for details,
see [8, 9)).

Substituting (2) into (1), we arrive at an infinite sys-
tem of equations for amplitudes E(k,,, ®). As a rule, all
of the amplitudes E(k,,) = E,, are small in comparison

with E,, because (k3 — K°) = 3K and (k}, - K =
2kgh,, + h,zn is of the order of K2. Thus, the relationship

E,/E,= o= 1075 allows one to neglect all the scattered
waves in comparison with E,. The situation is different
if a crystal is oriented relative to the vector k, of the
incident wave in such a way that the following condi-
tion is valid for the nth reciprocal-lattice vector:

(K2-K) =% K. (3)

In this case, all of the amplitudes E, and E, become
comparable, and one must solve the system of two vec-
tor equations. This is the case of two-beam diffraction
with one diffracted beam.

One can readily see that, for any wavelength, condi-
tion (3) can readily be satisfied for two reciprocal-lat-
tice vectors simultaneously (for example, nth and /th)
with the aid of simple crystal rotations about two mutu-
ally perpendicular axes. In this case, there are two
strong diffracted beams, and we arrive at three-beam
diffraction. However, the real situation is even more
complex. The simultaneous fulfillment of conditions
k:= kX= k; = K’ signifies that one can draw a cir-
cumference in the reciprocal lattice through three recip-
rocal-lattice points 0, N, and L, which is a section of the
Ewald sphere of radius K. In some cases, when the
reciprocal lattice is of a high symmetry, the circumfer-
ence can pass through more reciprocal-lattice points.
Then, we arrive at four-, five-, or six-beam, etc. diffrac-
tion, respectively. An elegant method for determining
these additional reciprocal-lattice points was described
by Pinsker [1].

With due regard for the aforesaid, let us consider the
case where condition (3) is performed for N — 1 recip-
rocal-lattice points, i.e., the case of N-beam diffraction
in a plane-paralle]l plate with the surface normal n,.
Then the wave vector k, of an incident wave is
expressed in terms of the wave vector K, of the wave in
vacuum: k, = K, + €ny/2. Let us pass from the vector
amplitudes of the electric field to scalar ones, using the
decomposition

EK,) =7," Y Bnen @)

s=n0

where e, and e,,; are mutually perpendicular unit vec-
tors of polarization normal to K, and 7, = (k,, - ng)/K.
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Then the system of 2N self-consistent equations can be
solved as a problem of eigenvalues of a certain matrix

€, = 3 KV, Y (<0, 80 + X)) B (5)

m's'

Here, 8. . is the Kronecker symbol, and a,, is the

parameter characterizing the deviation of the mth recip-
rocal-lattice vector from the Bragg condition

o = [(K,+h,)2-K1/K". (6)

The matrix

Ko = 2 KoKy K ) )
ij

consists of elements that represent the scattering ampli-
tude of diffracted beams in the kinematical approxima-
tion. Therefore, hereinafter, their matrix is called the
kinematical-scattering matrix.

Problem (5) has 2N solutions. There are 2N various
three-dimensional configurations of the radiation wave
field (i.e., of the X-ray standing waves). Each wave
interacts with the crystal atoms in a different way and,
in particular, is differently absorbed during its propaga-
tion through the crystal. The total amplitude of the elec-
tric field of an X-ray wave is the superposition of all the
standing waves having different coefficients a; (herein-
after called the excitation degrees). The values of these
coefficients are determined from the boundary condi-
tions on the entrance surfaces of the plate. Assume that
the amplitudes of external beams form a vector

—-12 .
Df"_:'y!_" . Then the system of equations for a; can be
written in the form

Y B, expligt,/2)a; = D,,, (8)
j
where t,, =0, if y,, > 0; 1,, = ¢, if ,, < 0; and ¢ is the crys-
tal plate thickness. Unknown amplitudes of the dif-
fracted beams are

R, = ZBmsjexp (ig;z,/2)a;, )
J

where z,, = ¢, if ¥,, > 0; z,, = 0, if ¥,, < 0. The coefficient
of the scalar-wave (ms) reflection into the wave (m's’)
equals the squared modulus of the ratio of an unknown
amplitude to the known one
R
D

ms

P(m's', ms) = (10)

The boundary-value problem can readily be solved
by the methods of matrix algebra. With this aim, we
rewrite equations (5), (8), and (9) in the matrix form

B*xe=G#*B, X*A=D, R=Y * A, (1)
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where €;; = €9 is the diagonal matrix of eigenvalues.
Calculating the vector A with the aid of the inverse
matrix X~!, we obtain an unknown vector R in the form

R=Y*X'*D=M+*D, M=Y*X" (12)

Thus, we arrived at a new matrix M directly relating
unknown amplitudes of the diffracted beams with the
known amplitudes of the incident beams. The latter
matrix is called the dynamical-scattering matrix.

In a conventional X-ray diffraction experiment,
there is only one incident beam. But the situation is dif-
ferent if a crystalline plate is a layer of a multilayer
crystalline system. Without going into detail, we would
like to note that the exact solution of this complex prob-
lem was obtained by Kohn [10]. A similar situation can
also arise in multicrystal systems.

3. X-RAY OPTICS OF A MULTIPLE-
DIFFRACTION EXPERIMENT

Two main requirements for the incident beam should
be met in order to observe dynamical effects in a conven-
tional two-beam X-ray experiment. First, the angular
intensity distribution should be narrower than the width
of the intrinsic reflection curve of the crystal. This can
readily be attained with the aid of an asymmetric crystal-
collimator [11]. Second, the width of the spectral AA/A
distribution should be of the same order of magnitude or
even narrower than the width of the intrinsic reflection
curve. In a two-beam experiment, the fulfillment of the
second condition is unnecessary if one uses a nondisper-
sive arrangement where the diffracting planes of both the
crystal-collimator and the specimen are parallel. This
explains the widespread use in two-beam experiments of
double- and multicrystal nondispersive arrangements
with asymmetric crystals.

In multiple X-ray diffraction experiments, both of
the above conditions should be met simultaneously for
all the reflections. This makes it necessary to provide
the angular collimation of the incident beam in several
directions simultaneously. Thus, Greiser and Materlik
[12] used a narrow slit to reduce the horizontal diver-
gence of an SR beam in a three-beam (333/511) exper-
iment. Collimation with the aid of an additional crystal
was also used for solving the phase problem [13, 14].
The best angular collimation (0.5” and 8.0” in the hor-
izontal and vertical planes, respectively) was attained
with the use of mutually perpendicular asymmetric
Si(111) crystal and channel-cut collimating Si(220)
crystal [14]. However, the dispersion problem has not
yet been solved.

In our experiments [5], we used two multicrystal
arrangements, shown in Figs. 1 and 2, in the application
of the method of X-ray standing waves. In the first
arrangement (Fig. 1), the monochromatization of an SR
beam from a bending magnet and its collimation in the
vertical plane for the case of three-beam (111/220) dif-
fraction was provided by a double-crystal monochro-
mator with symmetric Si(111) crystals. Collimation in
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Fig. 1. X-ray optics of multiple diffraction experiments using a channel-cut crystal for two-dimensional collimation.

the horizontal plane was provided by a channel-cut
Si(220) crystal with double reflection. To make the
nondispersive arrangement, the channel-cut crystal was
inclined in such a way that the (220) diffraction planes
of the collimator and the specimen were parallel. This
was provided by rotating a crystal for a necessary angle
about the incident-beam direction. Thus, when process-
ing experimental data, we could consider the angular
divergence of the incident beam only. This divergence
was determined as a product of the reflection curves
R,,; for a double-crystal monochromator and Ry, for a
channel-cut collimating crystal. On the two-dimen-
sional (0, @) diagram, the intensity distribution of the
incident beam is seen as the region of intersection of
two bands (Fig. 8b). It is precisely this region that was
used to calculate the convolution in processing the the-
oretical data and their comparison with the experimen-
tal results. Their perfect agreement [S] confirms the
efficiency of the suggested arrangement.

However, the above approach is not universal. There-
fore, it is very important to find a universal arrangement
for collimation that can be used in various multibeam
combinations. The most promising here is the use of
multibeam effects themselves. In particular, it is well
known [15] (see also Sect. 4) that the angular range of
anomalous transmitted X-rays in six-beam diffraction is
limited in two mutually perpendicular directions. The
second X-ray optical arrangement (Fig. 2) is based on
the use of this phenomenon.

An SR beam from a vertical wiggler is monochrom-
atized with the aid of two symmetric Si(111) crystals and
reflected by a Si(220) crystal toward the collimator and
the specimen. The collimator is a 5-mm-thick Si(111)
crystal positioned for a six-beam Laue diffraction. An
anomalously transmitted direct beam is incident onto a
crystal-specimen. We used this arrangement in both
experiments on six-beam diffraction proper and in exper-
iments on three beam (111/220) diffraction. Note that, in
the general case, this arrangement is dispersive. How-
ever, as was shown earlier [5], a six-beam collimator pro-
vides an additional beam monochromatization up to
AA/A = 1.5 x 1075, In three-beam (111/200) diffraction,
this value is much lower than the angular ranges of the
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reflections under study. Therefore, it is possible to ignore
the incomplete monochromatization and to consider
only angular beam divergence.

Concluding this section, we would like to note that
the second arrangement is fundamentally new, and we
were the first to use it. However, the variety of possible
X-ray optical arrangements for multiple diffraction
experiments is not limited to the cases considered
above. On the other hand, the modified methods of two-
dimensional angular collimation can also be used suc-
cessfully in other fields of X-ray diffraction (such as
diffraction under the conditions of total external reflec-
tion, topography, etc.)

4. ANOMALOUS TRANSMISSION OF X-RAYS
IN SIX-BEAM DIFFRACTION

The phenomenon of anomalous transmission of X-
rays through a thick absorbing crystal under the condi-
tions of two-beam diffraction was first discovered by
Borrmann in 1941 [16]. Since then, the phenomenon
has been studied in detail both theoretically and exper-
imentally. Physically, the effect consists in excitation in
a crystal of a standing-wave field whose intensity is
modulated along the diffraction vector and is close to
zero at the reflecting planes. A more complex structure
of the wave field under the conditions of multiple dif-
fraction allows one to suppress the interaction of the
X-ray radiation with crystal atoms.

Here six-beam (220, 242, 044, 224, 202) diffraction
where twelve Bloch waves are excited in a crystal (six
for each polarization state) is of great interest. Each of
these waves is characterized by its own absorption
coefficient. The structure of the most weakly absorbed
field is such that not only the amplitudes of the field,
but also its first and second derivatives, with respect to
coordinates, are zero at the crystal lattice points. As a
result, photoelectric absorption is substantially sup-
pressed; therefore, the minimum absorption coefficient
is limited by Compton scattering alone [17, 18].

The unique properties of six-beam diffraction
attracted the attention of many researchers (see the ref-
erences in [1, 7]). The simplest experimental arrange-
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Fig. 2. The arrangement of a multiple X-ray diffraction experiment with a six-beam collimator.

ment was used when the lines of anomalous transmis-
sion were recorded on photographic plates. Theoretical
analysis of the experimental results showed [19, 20]
that, in this case, the effect of anomalous transmission
is masked by the optical effects of focusing and defo-
cusing. The latter makes the quantitative studies of
anomalous transmission almost impossible. Thus, the
only method possible here is direct intensity measure-
ments of the transmitted beam in the diffractometric
experiment. Such measurements were first performed
only recently, with the use of synchrotron radiation [2].

The schematic diagram of the experiment is shown
in Fig. 3. The specific features of a six-beam collimator
were considered in Sect. 3. We note here only that the
above effect was used in hopes of attaining angular col-
limation sufficient for studying the effect itself.

The specimens were dislocation free 3- and 5-mm-
thick Si crystals. We measured the AB-dependences of
the transmitted beam intensity for various values of A@.
The measurements were made at the wavelengths
A =0.93 and 1.15 A, corresponding to pt = 12 and 24,
for a crystal of thickness ¢ =3 mm, and to it = 19.4 and
39.7, for a crystal with =5 mm.

Figure 4 shows the experimental two-dimensional
intensity distribution for a transmitted beam for ps = 12.
The value Ag = O corresponds to the center of the six-
beam region. A relatively low value of s allows one to
observe the intensity distribution both inside and out-
side the six-beam region and to compare in detail the
experimental and calculated results. As is evident from
Fig. 4, the peak intensity in the center of the six-beam
region is more than three times higher than the intensity
of the 220 peaks. This indicates the enhancement of
anomalous transmission, although it is weakly marked
for the given value of .

CRYSTALLOGRAPHY REPORTS

In order to compare the experimental and theoretical
data, we calculated the transmission coefficients P(Op,
Os, AB, A@) defined as the intensity ratios of the p-
polarized plane wave in the direct beam at the exit sur-
face to the intensity of the s-polarized wave at the
entrance surface of the crystal [see formula (10)]. With
due regard for the notation introduced in Sect. 2, these
coefficients can be calculated by the formula

P(0p, 0s, A8, AQ) = Y [By,;Bo,;] “exp(—pp). (13)
J

In our case of pure Laue geometry, the calculations can
be simplified almost without any loss in accuracy by
using the approximation in which problem (5) is solved
for a nonabsorbing crystal, i.e., in the zeroth order with
respect to X;/X,. The absorption coefficients p; for each
standing-wave field are calculated in the first approxi-
mation as the diagonal elements of the absorption
matrix

W= Y 3 B, (K, P Aol By (14)

mp ns

Figure S shows the calculated two-dimensional
intensity distribution for a transmitted beam for a
c-polarized incident plane wave (the so-called intrinsic
curves). One can clearly see five intersecting bands cor-
responding to different angular ranges of the two-beam
Borrmann effect. The bands corresponding to weak
reflections are narrower, but the transmission maximum
is rather high because of a low pr value. The experimen-
tal curves show no peaks due to weak reflections
because of insufficient collimation of the incident beam.
To be able to compare the theoretical and experimental
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Si collimator

Si(111)

SR source

Si(111)
Fig. 3. Schematic diagram of an X-ray experiment for studying anomalous transmission under the conditions of six-beam diffraction.

data, one must calculate the two-dimensional convolu-
tion of the transmission coefficient for a specimen with
the transmission coefficient P (s, o, AB, A@) for a six-
beam collimator. The convolution is calculated as

(A8, Ag) = (Zjdgdnp(op, 0s, AB +E, A@ +1)

pPs R
-1

X P (s, 0,8, n))_ X (Zjd&anc(s, c,&, n)) (15)
s R

and takes into account the change in the polarization
state of the incident o-polarized SR beam upon its
transmission through the crystal-collimator. The angu-
lar range R used in the calculations makes an essential
effect on averaging. However, if one considers that the
radiation is not completely monochromatic, and there-
fore, its angular range is not known exactly, the angular
range is assumed to be somewhat wider than follows
from the preliminary collimation of the monochromatic
radiation. This problem occurs only for low L values.

Figure 6 shows the theoretical and experimental
curves for three A@ values. The sufficiently good agree-
ment between the theory and the experiment confirms
the efficiency of the suggested experimental approach
to the quantitative study of anomalous transmission in
six-beam diffraction. A more pronounced effect of
anomalous transmission can be observed only at higher
A@ values. The respective analysis of this case will be
performed in the near future.
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5. THE METHOD OF X-RAY STANDING
WAVES UNDER THE CONDITIONS
OF MULTIBEAM DIFFRACTION

The method of X-ray standing waves is used to mea-
sure, along with the intensities of diffracted beams, the
intensity of inelastic-scattering channels (secondary
processes). Theoretically, the calculation of the latter
reduces to the following [21, 22]: first, the intensity of
the total radiation field is calculated at a certain point r
in the vicinity of the position of an atomic nucleus r,
located at the depth z:

2
F(r) =

> E(k,)exp(ik,r)

(16)
= zE: (?E (2)exp [i(h,—h,)r].

The phase factor should be averaged with due regard for
the electron density distribution of the atom and the
probability of inelastic processes and thermal vibrations.

Then the result can be written in the form

I(2) = (F(r)) = 3 |E,(2)’

" an
XimalS)
Xioo(8)
The prime at the sum sign indicates that the term with
m = n is eliminated; and %;,..(s) describes the contribu-

tion of the X-ray absorption process denoted by s, to the
imaginary part of the Fourier component of polarizabil-

+ > EX()E, ()
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Fig. 4. The experimental two-dimensional distribution (A8, A@) of the transmission coefficient under the conditions of six-beam

diffraction.

ity. Finally, in order to calculate the intensity of the sec-
ondary-radiation yield from the crystal, the result
should be integrated over the crystal depth with due
regard for the probability P (z) of the secondary radia-
tion yield
t
Ie = [dzP@)1.). (18)
0
If one measures photoelectron emission from the
entrance surface of the crystal in the Bragg (reflection)
diffraction, the escape depth of the secondary radiation
is much less than the depth of reflection, whereas the
polarizability ratio is close to unity. Then, the angular
dependence of the secondary process reflects the angu-
lar dependence of the intensity of the X-ray wave field
at the point of the atom location in the subsurface crys-
tal layer
2
. (19)

I, =

Y E, 0

If the atom is displaced from its position in the lattice
or if the lattice points in the subsurface layer are dis-
placed with respect to those of the matrix in which the
X-ray standing waves are formed, then the formula
becomes

2
. (20)

1, =

Y E,(O)exp [ih,u(0)]
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The additional phase factors, considering the displace-
ments of atoms, drastically change the character of the
angular dependence, which, unlike that in the two-
beam case, is sensitive to two coordinates of the dis-
placement in the plane of the reciprocal-lattice vectors.
This provides the two-dimensional localization of
atoms in the surface layer.

Greizer and Materlik [12] studied the fluorescence
yield from a Ge crystal under the conditions of three-
beam (511/333) diffraction. We measured the yield of
photoelectrons excited by an X-ray standing wave
under the conditions of three-beam (111/220) diffrac-
tion [3, 6]. The specimen was a perfect Si(111) crystal.
The yield of K-photoelectrons was measured by a gas-
proportional counter [23] specially designed for multi-
beam measurements and for providing rotation of a
crystal with a sufficient accuracy about the ¢-axis per-
pendicular to the surface in the vacuum-tight counter.

Figure 7 shows the yield curves and the curves for
(111) and (220) reflection measured in the central part
of the three-beam diffraction region at different values
of the azimuth angle A (the point A6 = A¢ = 0 corre-
sponds to the center of the three-beam region). The
escape depth of photoelectrons is very small
(=0.2 um); therefore, the photoemission curves dem-
onstrate quite clearly the interference of the wave fields
in the crystal. Thus, the yield of photoelectrons sub-
stantially decreases in the region of total external
reflection corresponding to the left-hand parts of
No. 2
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Fig. 5. Theoretically calculated two-dimensional (A8, Ap) distribution of the transmission coefficient for a o-polarized plane wave

under the conditions of six-beam diffraction.
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Fig. 6. Comparing the experimental (dashed line) and theoretically calculated (solid lines) transmission coefficients with due regard

for the two-dimensional convolution.

the curves in Fig. 7 (for the 220 curves, at A@ < 0; for
the 111 curves, at Ag >0). On the other hand, if the con-
dition of the three-beam diffraction (Fig. 7c) is fulfilled
exactly, the photoelectron yield exceeds the respective
value for two-beam diffraction by a factor of 1.5.
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One of the advantages of the multibeam arrange-
ment for the X-ray standing-wave method is the possi-
bility of measuring the yield curves for several reflec-
tions, in fact, under the conditions of two-beam diffrac-
tion. Figure 7f shows the angular dependence of the




(@

Rlll' Rzzo, rel. units

0.8

oo
0099044 o

000

(f) ~ 2 . ]

Ly, rel. units

-
tn

R“ n R220, rel. units

oy
o
T

o
(=]

0.5 0.5

-10 40

Fig. 7. The curves of photoelectron yield (thombs) and the
(111) (squares) and (220) (triangles) reflection curves under
the conditions of three-dimensional 111/220 diffraction for
various angles Ag: (a) —12.8”, (b) —-7”, (c) -0.5”, (d) 5.3",
and (e) 127; (f) the same data outside the region of strong
interactions (A@ = 30”). The dashed line shows the data cal-
culated by the two-beam theory.

photoelectron yield and the reflection curves for a
rather pronounced deviation from the exact three-beam
position (A@ = 30”). The experimental curve obtained
agrees quite well with the curves calculated by the two-
beam theory. Obviously, an increase of the angle A@
makes the two-beam approximation more accurate.
Thus, in one angular scan, one can measure the curves
of secondary processes for several reflections. This is
especially useful when one has to study structural
changes occurring with time.

6. RECORDING OF PHASE-SENSITIVE CURVES
BY THE METHOD
OF THREE-BEAM DIFFRACTION

Three-beam diffraction allows one to implement a
situation close to that in the two-beam X-ray standing
wave method but without measuring secondary pro-
cesses. Such a situation arises when the Bragg condition
(3) is fulfilled rigorously for the first beam H, whereas,
for the second beam G, it is fulfilled only approximately.
In this case, the beam G can be considered in the kine-
matical approximation. Producing no effect on the
strong beams 0 and H, the beam G itself is generated by
the coherent superposition of these strong beams.
Therefore, the angular dependence of G is formed under
a strong influence of the angular dependence of the
reflection-amplitude phase. In turn, this fact allows one
to measure the phase of the structure factor, in other
words, to solve the phase problem of the structure anal-
ysis directly. This was first demonstrated in [14].

In actuality, the analogy of this method with the
method of X-ray standing waves is even closer. As was
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Fig. 8. (a) The angular dependences
the total (220) and (111) reflection,

of the intensities at the tails of the (111) and (220) reflection curves in the angular regions of

respectively. (b) Mutual arrangement of the reflection regions on the (A8, Ag) diagram. The
dashed line corresponds to AB-scanning.

shown earlier [10, 22, 24], this method proved to be
very convenient for studying the structure of subsurface
layers, because a weak beam is formed in the vicinity
of the surface, and the depth of its reflection is inversely
proportional to the deviation from the Bragg angle in
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full analogy with the well-known method of asymptotic
diffraction [25]. Even if the deviation angle is quite
small, the effective depth of reflection is smaller than
the escape depth of photoelectrons, and, therefore, one
can use the approximation of the zero reflection depth.
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In this approximation, the intensity of a weak G beam
is determined to be

Igs(z) = Z (egpeOs) 2

p=x0 2
Xon
22t exp [—ihu(0)]] .

ps
g0

@D
X |Eq,(0) + E,(0)

Here, notation (7) is used: s is the index of two-wave
polarization for beams 0 and H, and p is the polariza-
tion index for the beam G polarization. As follows from
formula (21), the anomalous angular dependence can
be observed only if all three of the reflections are not
forbidden.

Up to now, no experimental studies of the structure
of disturbed surface layers have been performed using
this method. For perfect crystals, a large number of var-
ious methods for direct determination of structure fac-
tors are known. The diffractometric method analogous
to the one described above was first applied in [14],
where the authors used a conventional X-ray tube. The
anomalous angular dependences similar to the photo-
emission curves were first recorded with the use of SR
and the new collimation method described in Sect. 3 in
our study [4].

The experiment was performed on a Si(111) crystal
for the three-beam case (111, 220). The angular depen-
dence of both beams obtained in two-beam regions of the
total reflection is shown in Fig. 8a for the deviation from
the exact three-beam condition A = —115”. The upper
curves correspond to weak beams with anomalous angu-
lar dependence; the lower curves correspond to strong
beams, with the reflection coefficient close to unity. The
solid curves were calculated by the exact formula of
multiple diffraction with due regard for the convolution
with the curves of intensity distribution for the crystal-
collimator. Figure 8b shows the two-dimensional
(A6, Ap) diagram illustrating the location of the (111)
and (220) regions of total reflection and the line of
ABO-scanning (dashed line). These curves demonstrate,
first, the phase-sensitive nature of the angular depen-
dence of weak beams and, second, the exact correspon-
dence of the obtained experimental data to the respective
theoretical calculations. (Note that no detailed compari-
son with the theoretical predictions was made in [14].)
Thus, we believe that the above suggested procedure can
be used as a new method for structure diagnostics of
slightly disturbed subsurface layers.
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