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Quantitative analysis methods of pink beam synchrotron radiation phase contrast images are presented. The contrasts of 
micro-objects are weak in the near field but increase in the far field. However, the sizes of the object images in the far field 
are different from the real objects sizes; therefore computer simulations are needed to accurately retrieve the objects sizes. 
We first describe the basics of the simulations, in particular, for micro-objects such as micropipes in silicon carbide single 
crystals. Then we apply computer simulations to the cross section size and shape measurements of the micropipes, one-
dimensional (1D) objects. In case of aligning the micropipe axis normal to the beam, our Fit Micro-Tube Image (FIMTIM) 
program allows us to obtain the solution automatically. We also discuss the limitations of this approach by revealing the 
changes in shapes and sizes of the micropipes. A theoretical model which describes the origin of the changes is suggested. 
Finally we demonstrate the simulations of 2D spherical micro-voids and compare them with experimental images. Pink 
beam far-field imaging is an effective approach for visualizing micro-objects inside absorbing solids and our quantitative 
analysis methods based on computer simulations can be a general framework for precise measurement of micro-object 
sizes. 

Keywords: crystal structure; defects; synchrotron radiation; x-ray scattering; phase contrast; imaging; micropipe; silicon 
carbide 

1. Introduction 

Third generation synchrotron radiation (SR) sources allow one to obtain x-ray phase contrast images even using x-ray 
beams with low [1, 2] monochromaticity. In particular, high flux of polychromatic pink SR permits to visualize internal 
microstructures of highly absorbing solids [3]. The simple in-line scheme quite sensitively reveals micro scale 
inclusions, voids, cracks and other inhomogeneities which can exist in advanced electronic materials [4-6]. Microscopic 
tubular pores or micropipes are of particular interest in research domains of bulk silicon carbide (SiC) [7-9]. The 
micropipe diameters in SiC vary from a few tenths to a few tens of micrometers [7-9]. Investigation of the micropipe 
shapes and sizes in correlation with crystal growth parameters is an important problem that needs to be solved for 
understanding their nature and eventually for the production of low-cost high-quality crystals. 
 Phase contrast imaging is known to require a high degree of spatial coherence. In 3rd generation SR sources, the 
spatial coherence is already provided by their small angular sizes. As a rule, temporal coherence is formed by the 
applied monochromator. However, we note that a SR spectrum is reducible to a peak with a maximum intensity at 
certain energy even without using a monochromator [2]. First of all, the radiation intensity decreases with energy in 
high energy regions owing to limited electron beam energy. On the other hand, low energies are preferentially absorbed 
when the beam passes through all the absorbers on its path, including the sample itself. The two effects result in a broad 
spectral peak centered on a certain energy, as demonstrated in Fig. 1(a) for Pohang Light Source (PLS) in Korea, a 
medium-brilliant SR source. Here, based on the absorption by a SiC plate of 490 µm thick, a spectral peak with the 
maximum energy E = 16 keV and an effective full width at half maximum (FWHM) ΔE ≈ 24 keV was obtained. As an 
absorbing material, a thick sample itself may be sufficient, but the absorption, if the sample is too thin, can be enhanced 
by adding an absorber.  
 Coherence for nonmonochromatic beams can be characterized by temporal and spatial coherence lengths. The 
temporal coherence length Lt is determined by the FWHM ΔE, or Δλ [10, 11]: Lt = hc/ΔE = λ 

2/Δλ, where h is the 
Planck constant and c is the speed of light. For the wavelength at the maximum peak with the SiC absorber λ = 0.775 Å 
(E = 16 keV), and the FWHM Δλ = 0.52 Å in Fig. 1(a), the temporal coherence length is estimated as Lt = 1.2 Å. The 
temporal coherence length, though small, is quite enough to form the interference patterns in the central part of the 
image. On the other hand, the spatial coherence length Ls is estimated as Ls = λ/α = 42 µm, where α = S/z0 is the angular 
size at the source-to-sample distance z0 (32 m) for the vertical source size S = 60 µm. The spatial coherence length is 
much larger than typical micropipe diameters. 
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 For a micropipe of 1 µm in diameter (D) the phase shift is small and thus the phase contrast is weak. If the sample-to-
detector distance z1 is small (a near field), the radius of the first Fresnel zone r1 = (λz1)

1/2 can be smaller than D. The 
image size, which is nearly equal to the object size, is too small to be detected with the poor detector resolution of 
typical pixel sizes about 1 µm. As z1 increases, the contrast becomes stronger and the image size is gradually enlarged at 
the same time, enabling one to visualize the micropipes with typical detectors. In that sense, the far field (where r1 > D) 
is appropriate for investigating the micropipes. 
 In this work we present a quantitative approach to phase contrast imaging of micropipes and micro-voids in SiC 
crystals. We show how the phase contrast theory is used in a computer program to simulate the images of the 
micropipes and determine their cross sections. We also discuss the nature of investigated micropipes. We shortly review 
our results to demonstrate the basic rules of image formation in pink SR. Finally, simulations of 2D micro-object 
images of spherical voids as an example are demonstrated. 
 

 

Fig. 1  (a) A spectrum of the pink SR beam at PLS. The upper curve is an initial spectrum. The middle curve is an effective 
spectrum after a passage of 2 mm thick Be window. The lower curve is an effective spectrum behind the 490 μm thick SiC plate. 
(b) Experimental scheme: 1 - sample; 2 - scintillator (150 µm thick); 3 - mirror; 4 - objective; 5 -detector. SR beam is parallel to the z 
axis. Micropipes are mostly parallel to y axis. The distance between the scintillator and the sample z1 was varied from 10 to 45 cm. 
(c) SEM cross-section image of the 4H-SiC wafer of 490 µm thickness. Opening of micropipes is seen as hexagonal (I), slit-like (II), 
or elliptical (III) etch-pits. 

2. Experimental procedure 

Several slices (~ 500 μm thick) were axially cut along the growth direction [0001] of sublimation grown [12] 4H and 
6H SiC boules that contain voids and micropipes. The (0001) SiC plates were mechanically and chemically mirror-
polished on both sides to remove a damage layer and a surface roughness.  
 Imaging experiments were carried out at 6D x-ray micro-imaging beamline in PLS. The experimental setup is shown 
in Fig. 1(b). The polychromatic radiation was extracted from a bending magnet port located at a distance of 32 m from a 
sample. The source size was 160 µm × 60 µm (H × V). After passing through a slit in front of the hutch, the radiation 
arrives at the sample 1 (Fig. 1(b)). Once penetrating the sample, the polychromatic radiation changes to a pink beam as 
seen in Fig. 1(a). The pink beam x-ray image is converted into visible image by the scintillator (CdWO4 crystal) 2, 
which is then reflected from a polished silicon mirror 3 and reaches the detector 5 after 20× magnified by the optical 
objective 4. 
 The [0001] direction of the sample plate was aligned parallel to the y-axis direction and perpendicular to the beam 
direction (the z-direction) (Fig. 1(b)). Then the micropipes that are almost in parallel to the [0001] direction are 
approximately in the y-direction and their images are obtained in a more coherent vertical direction (x-axis). The 
scanning electron microscopy (SEM) image in Fig. 1(c) shows the cross-section of the sample plate with 490 µm 
thickness. One can see hexagonal (I), slit-like (II), or elliptical (III) pores on the etched surface. 
 By virtue of the high flux pink SR beam, thick SiC samples can be imaged with short exposure times of a few 
milliseconds. However, because of parasitic scattering by a statistical noise of the source (SNS) and an inhomogeneous 
scintillation, etc., it is required to get substantially high signals comparing to background. The signal-to-SNS ratio is 
defined as C/2N 

1/2, where C is a contrast and N is a maximal count rate (intensity). The contrast C is equal to the 
difference between the maximal and the minimal intensities of the image divided by the sum of these values; therefore 
the exposure time should be a maximal possible value to provide sufficiently high intensity. For two CCD detectors M1 
and M2 of 12 and 14 bit dynamic ranges, respectively, suppose N1 = 3200 and N2 = 12000 photons per second, and 
C1 = 550 and C2 = 3000 photons. Then the signal-to-SNS ratios become 5 and 14 for M1 and M2, respectively, 
suggesting the preference for M2 CCD with the higher count rate. 
 Apart from the signal-to-SNS ratio, one has to take care of CCD matrix pixel size. We notice that image quality is 
influenced by the pixel-to-object size ratio rather than the pixel size alone. In the near field the image size of a 
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micropipe is nearly equal to its diameter D (~a few µm). Then the pixel size determines the resolution. In this respect, 
CCD M1 with 5.5 µm×5.5 µm pixel size is preferred to CCD M2 with 9 µm×9 µm one. The pixel-to-object size ratio can 
be reduced using a magnifying optical objective. For example, 20× magnification effectively reduces the above 
mentioned pixel sizes down to 0.27 µm and 0.45 µm for M1 and M2, respectively. However, computer simulation 
demonstrates that real detector resolution is worse than the pixel size, presumably due to the scintillator parameters, 
such as the thickness, the efficiency, etc. On the other hand, in the far field the image size becomes larger and the pixel 
size becomes less critical. 
 What will be the minimal micropipe size that could be measured in the in-line scheme of Fig. 1(b)? Let us consider 
the most prominent part of the micropipe image which has the bright contrast in its center. The contrast C is 
proportional to the phase shift with a numerical coefficient close to unity based on computer simulations of various 
monochromatic images in the Fresnel region [13]. The phase shift is equal to ϕ = 2πδ t/λ, where λ is the wavelength of 
a monochromatic SR and t is the object size along the beam. By substituting the decrement of refraction index δ = aλ 

2, 
where a is proportional to the electron density of the medium ρ, ϕ = 2πaλt. 
 The minimal micropipe size thus depends on both λ and ρ, and specifically increases with the decreases of λ and ρ. 
For example, when  ϕ = 0.02,  λ = 0.775 Å and ρ(SiC) = 3.21 g/cm3, one has а = 4.35×10-6 Å-2. Then, the minimal 
object thickness is estimated as t = 0.09 µm. In [14, 15] we obtained the formula for the relative intensity deviation from 
unity in the center of the bright part of micropipe image C0 (approximately C/2): C0 = (π 2/21/2)aλ(D/r1)D0 , where r1 is 
the radius of the first Fresnel zone, λ is the wavelength in the spectrum maximum (Fig. 1(a)), D and D0 = t are the 
transverse and the longitudinal micropipe diameters. 
 One can easily see that C0 is proportional to ϕ with the coefficient equal to (π /23/2)(D/r1) = 1.1(D/r1). In the Fresnel 
region D/r1  ≈ 1 and the both C0 and ϕ parameters have nearly equal values. In the far field, where D < r1, the contrast 
weakens. 
 In fact, the estimation of the longitudinal diameter depends on the contrast which can be experimentally measured. If 
the contrast C0 = 0.02, then SNS is assumed to be less than 0.02, and therefore more than 2500 photons are measured. 
However, the noise can be higher for several reasons. The contrast should be at least 4 times larger than the noise. Then 
the minimal longitudinal diameter enlarges up to D0 ≈ 0.36 µm. We note that all setup components produce noise, 
besides the SR source. 
 Finally, we consider the influence of the parasitic noise on the image fine structure. We return to the detectors M1 and 
M2 to evaluate their view fields as follows. The M1 and M2 resolutions are equal to 3296×2472 and 4008×2672 (H×V) 
pixels, respectively. For the effective pixel size of 0.27 µm for M1 and 0.45 µm for M2, their view fields are 
906 µm × 680 µm and 1804 µm × 1202 µm, respectively. The image of the horizontal micropipe of 2 µm in diameter at 
the sample-to- detector distance 40 cm (r1 = 5.5 µm) does not exceed 30 µm in width. It occupies 4.4% (2.5%) of the 
M1 (M2) view field in the vertical direction, indicating that the quality provided by M2 is more badly affected by the 
beam, the scintillator and the optical objective. 
 In summary, a brief analysis of the instrumental aspects shows that the fine structure of micropipe image in the pink 
beam can be observed by enhancing the intensity and the pixel-to-object size ratio, and by keeping off large area 
sensors. Reduced noise allows one to resolve the micropipes even with a longitudinal diameter ≥ 0.1 µm. 

3. Basics of computer simulating phase contrast images of micropipes 

The intensity profile across a micropipe axis and the beam direction is described by the formula: 

 ( ) )(,)(  ,)()( 111

2

0 xTZxxPdxxaxaxI −==   (1) 

where x0 = xz0/zt, zt = z0 + z1; and Z = z0z1/zt. The formula is derived under the following approximations: (i) the 
micropipe is considered as a quasilinear object whose electron density undergoes fast and slow changes along x and 
along y axes, respectively (see Fig. 1(b) for the axes): this allows us to neglect the intensity variation along the y-axis; 
(ii) transmission of the radiation through the object is taken into account in the limits of geometrical optics with an 
additional simplification that all rays are parallel to the z-axis. 
 Under these assumptions the problem is reduced to the convolution of the Fresnel propagator P(x,z) [16] and the 
transmission function T(x) where 
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 Here Φ = (4π/λ)δ R0, M = Φβ /δ, 2R = D and 2R0 = D0 are the micropipe diameters across and along the beam, 
respectively;  ni −=− 1βδ , where n is the complex refractive index of the matter. It is assumed that the square root is 

equal to zero for negative argument.  
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 Since the integrand in (1) does not decay at infinity, for numerical calculations the integral should be rewritten, using 
the propagator normalization property, in the form 

 ( ) ( )[ ]1,1)( 111 −−+=  xTZxxPdxxa  (3) 

 Computer simulations were performed with the FIMTIM (Fit Micro-Tube Image) computer program which is 
elaborated in Java on the base of the formulae (1) - (3) [2, 17, 18]. The program allows: (a) Calculation of 
monochromatic image profile along the x-axis for a micropipe; (b) Estimation of the real spectrum taking into account 
all absorbers on the beam path, including the sample itself; (c) Summation of many monochromatic images with the 
weights following from the spectrum to simulate pink beam image [19] (d) Fitting of the experimental intensity profile 
to find the transverse D and longitudinal D0 diameters of micropipe cross-section, i.e. normal and parallel to the beam; 
(e) Determination and mapping of the dependence of the least square sum  χ2(D, D0); (f) Evaluation of accuracy of the 
obtained parameters. 
 In addition, the theoretical intensity profile across the micropipe is calculated as a convolution of the source 
brightness within its size (Gaussian distribution) and the image for a point source. The FWHM of the Gaussian is equal 
to Sd = S z1/z0, where S is the effective transverse (vertical) source size. The summation over the spectrum is performed 
on the set of energy points from 5 to 40 keV with a step of 1 keV. 
 The program reads the experimental profile of intensity (EPI) and calculates the theoretical profiles (TPI) for 
predetermined parameters D and D0 which are called TD (transverse diameter) and LD (longitudinal diameter). Each 
time EPI is normalized from the condition of better coincidence with TPI. By means of varying the parameters D and 
D0 the program automatically searches for a nearest minimum of least square sum  χ2(D, D0) on some set of points with 
a definite steps using an effective algorithm. Starting from big steps for D and D0 at the beginning, one may sequentially 
reduce them to increase the accuracy of the minimum point. On the next stage the full minimum region in the plane of 
parameters D and D0 is identified with an intelligent algorithm to shorten the calculating time. 
 The important question for us is a level of accuracy of the obtained values. It is the reason why it is very important to 
examine the curves χ2 − χ

2
min = B with various values of B. The program FIMTIM can draw two-dimensional map of 

χ2 − χ
2
min as a function of D and D0 near the minimum point [20]. 

4. Computer simulations 

4.1 Computer simulation of micropipe cross sections 

With a large view field several micropipes can be recorded simultaneously. Taking into account micropipes that are 
deviated from the growth direction the images were recorded after adjusting the sample to have the axes of a chosen 
group of pipes aligned in horizontal positions as can as possible. The images were opened by means of the computer 
program ImageJ [21]. The intensity profiles were recorded across each pipe axis in the form of numerical arrays. Two 
or three pixels along the axes could be summed to increase the signal-to-noise ratio. These profiles were used for the 
simulation. 
 Figure 2(a) shows a fragment of pink SR phase contrast image of a micropipe in SiC. The sample-to-detector 
distance is 40 cm. The normalized experimental curve (markers) (obtained from the image) is presented in Fig. 2(b). 
The maximal experimental intensity or the count rate is equal to N = 11250 sec-1; the contrast in photons is С = 7000 
and the signal-to-noise ratio is 16.5. The best coincidence ( χ2=9.8×10-5) with the calculated profile (solid line) was 
reached for the values of diameters D = 1.36 µm and D0 = 1.82 µm. 
 To estimate the level of accuracy of the obtained diameters the program has drawn the 2D map of χ2 − χ2

min as a 
function of D and D0 near the minimum point (Fig. 2(c)). On the map the black and the white colors display 
χ2

min = 9.8×10-5 and χ2
max = 1.13×10-4, respectively. All the values χ2 > χ2

max were replaced by χ2
max. One can see that 

the area of small χ2 values is not localized. It has a minimal dimension along the direction D = D0 and a maximal 
dimension along the perpendicular direction. 
 The map demonstrates a universal shape of micropipe image profile in the far field, as first described by Kohn et al. 
[14, 15]. Experiments showed that the change of micropipe cross section size affected not the image size but the 
contrast. This result is explained by Fraunhofer diffraction in phase objects having small sizes along the beam, when the 
phase shift  Δϕ < 1. Estimation shows that Δϕ < 1/2 at λ = 0.775 Å for SiC when D0 ≤ 2.5 µm. Fraunhofer diffraction 
condition for micropipes is satisfied when D < r1, which agrees with the experiment: at z1 = 40 cm the diameter of the 
first Fresnel zone is r1 = 11 µm. 
 Under the Fraunhofer diffraction condition the calculated intensity of monochromatic radiation in the central part of 
the image is determined by the product DD0, hence by the cross section area. This part is influenced weakly by the pink 
beam. When the distance increases from the center, oscillations of monochromatic harmonics change which cause a 
sharp decrease in the total pink beam contrast. In fact only the first oscillations remain, while the others are damped. It 
is of interest that the central maximums of intensity profiles for all frequencies are proportional to the cross section area. 
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One can obtain a universal profile by summing up all the monochromatic profiles (for a specific spectrum) divided by 
the cross section area. In the pink beam such universal profile has only the central peak with strongly damped side 
oscillations formed by a minimum and a maximum. Some researchers may be tempted to determine the object size from 
the bright stripe size in the center between the dark stripes. However, it is wrong. This size is in fact the size of the first 
Fresnel zone. 

 

Fig. 2  (a) A micropipe image at 40 cm from the detector. (b) Experimental data and simulated theoretical profile in the case of best 
coincidence ( χ2=9.8×10-5). (c) A map showing the least square sum χ2as a function of D and D0 for the micropipe in (a). 
 
 We used the diameters D = 1.36 µm and D0 = 1.82 µm to calculate the cross section area, 1.9 µm2. Several sizes of 
the micropipes in our samples of 4H-SiC are shown in Table 1. In Table 2 we summarized the data of superscrew 
dislocation Burgers vector magnitudes b determined for the micropipes in 4H-SiC with a white SR topography [7], a 
transmission electron microscopy [8] and a polarized light microscopy [9]. 
 
Table 1  Micropipes parameters determined by the 
computer simulations. D is TD; D0 is LD, and S is a cross 
section area 

D, µm D0, µm S, µm2 

1.80 0.50 0.7 
4.10 0.40 1.3 
1.44 1.68 1.9 
1.82 1.74 2.5 
1.70 2.05 2.7 

 

Table 2  Surface energy γ and the superscrew dislocation 
Burgers vectors b [7-9]. S is calculated using the Frank 
formula [22] 

 γ, J m-2 b S, µm2 

0.2 [7, 8] 
6c 0.6 
7c 1.2 
8c 2.1 

0.94 [8] 
12c 0.5 
17c 1.9 

2 [9] 17c 0.4 

 
 By using the Frank formula: D = μ b

2(4π2γ )-1 [22], which relates the diameter of an equilibrium micropipe D with its 
Burgers vector b, a shear modulus µ and a surface energy γ, one can estimate the diameter. However, this estimation 
needs some assumptions, because a precise value of γ is not available. In [7-9] the shear modulus was taken equal to 
µ = 200 GPa. The authors [8, 9] evaluated γ by using the correlation between b2 and D. The values of the micropipe 
diameters differ between the data sources, as shown in Table 2. A remarkable discrepancy in γ values does not allow us 
any assumptions of the Burgers vector magnitudes of the micropipes in our 4H-SiC samples. We even do not know 
whether they are superscrew dislocations with open cores or not. Evidently the diameters measured by Ma [9] were 
much smaller than ours. In addition to quite big sizes and (sometimes) elliptical shapes, the other specific feature is 
described in the next section: we found that the section sizes changed along the micropipe axes. 

4.2 Limitations of the one-dimensional computer simulations 

The FIMTIM program determines two parameters of the elliptical intersection region of the micropipe by the x-ray 
beam: the one “across” (parallel to x, the diameter D) and the one “along” (parallel to z, the diameter D0) the beam 
(Fig. 1(b)). However these values may not be equal to real diameters of the micropipe cross section, either circular or 
elliptical. A priori we do not know whether the micropipe axis is parallel to the sample surface or not; and in general 
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case it may have some angles with the coordinates shown in Fig. 1(b). One projection is not sufficient to restore the 
proper micropipe cross section. The analysis of possible angles [20] shows that the results of the simulation disagree 
with the real cross section sizes in the following cases. 

 

Fig. 3  SR phase-contrast images 
of a micropipe in SiC wafer. (a) 
The sample surface is fixed normal 
to the beam at a distance of 45 cm 
from the detector. (b) The sample is 
tilted 28° around the micropipe axis 
at a distance of 10 cm from the 
detector. Arrows 1 and 2 point to 
the regions of dark contrast. Lines 
L1, L2 and L3 mark the simulated 
levels. (c) and (d) display the 
sample positions. 
 
 
 
 

i. When a micropipe has an elliptical cross section and its axis is parallel to y (Fig. 1(b)) the major axis of the ellipse can 
have the angle Φ with x axis. Then the distances D and D0 (across and along the beam) of the transmission function 
T(x), given by (2), are not equal to the micropipe diameters d and d0. The latter can be calculated from D and D0 by 
means of the relation D = [(d cosΦ)2 + (d0sinΦ)2]1/2, D0 = d0d/D provided that the Φ angle is known. The Φ angle can be 
restored by fitting two projections measured for two different rotation angles around y axis. 
ii. Let a micropipe have a circular cross section with diameter d, and let the micropipe axis have an angle  θ  < 90° with 
the beam direction (z in Fig. 1(b)). Such situation can take place when the micropipe is not parallel to the sample 
surface adjusted perpendicular to the beam. When θ is small, the image becomes dark in the center [23]. In this case the 
parameters of the transmission function can be expressed in d and θ as D = d and D0 = d/sinθ. 
iii. Even if the micropipe axis is perpendicular to the beam, it can have an angle  ψ  < 90° with the vertical plane (x, z) 
and hence the axis x in the plane (x, y) (Fig. 1(b)). In this case the parameters of the transmission function relate to the 
micropipe diameter d through the expression: D = d /sinψ and D0 = d. It is easy to correct the image position by 
rotating, but the source projection would increase to an unknown value and the precision of the simulation would 
decrease. 
 Our observations show that the micropipes can not only vary their orientation in space, but also their cross sections 
along their axes. Images of a micropipe with variable cross section are exemplified in Figs. 3(a) and 3(b). They were 
measured at the distances of 45 and 10 cm from a detector, respectively. In the top panel one can see that the contrast 
changes along the micropipe axis. In the regions marked by arrows 1 and 2, the central parts of the image darken up. 
The top panel shows the image for the perpendicular sample position sketched in Fig. 3(c). After tilting the sample by 
28° around the axis perpendicular to the beam in the horizontal plane, as displayed in Fig. 3(d), we could see that the 
micropipe shape changed at the same levels 1 and 2 in Fig. 3(b). Fitting at the levels L1, L2 and L3, marked by white 
lines in Fig. 3(a), confirmed the cross section change by giving the following diameters: D = 1.05 µm and D0 = 3.15 µm 
at the level L1; D = 0.89 µm and D0 = 3.70 µm at the level L2, and D = 1.01 µm and D0 = 2.44 µm at the level L3. At the 
same time, the cross section looked almost round between the levels L1 and L2: D = 1.82 µm and D0 = 1.74 µm. The 
maps χ2 − χ2

min (D, D0) close to the minimum point had different shapes, but in all the cases the full minimum region 
was remarkably spreading. 
 We can now answer the question: can one trust the results of the simulation? Analysis compels us to prefer a negative 
reply. Indeed, the far field image in Fig. 3(a) is totally determined by the first Fresnel zone, and the distance between 
the edges is equal to 2r1 = 2(λz1)

1/2 = 11.8 µm, where λ = 0.775 Å is the wavelength in the spectrum maximum 
(Fig. 1(a)) and z1 = 45 cm. Meanwhile the distances between the levels L1 - L2 and L2 - L3 are 25 µm and 13.5 µm, 
respectively. Both the distances are comparable with 2r1. In the far field, the images are affected within the first Fresnel 
zone not only across but also along the micropipe axis. Even the most abrupt changes of the diameters are impossible to 
be detected in the one dimensional approach. Only the constant shape cross section keeps its proper size. 
 Concluding this section we notice that first, one dimensional approach restores the proper micropipe diameters only 
for the segments longer than 2r1 provided that they are constant in size and shape. Abrupt cross section changes are not 
detectable in the far field. Second, when the micropipe axis is in an arbitrary position relative to the beam, one cannot 
determine the diameters from only one projection. However, several projections might not be helpful either, since the 
micropipe position in the sample interior is beforehand unknown. In those cases when the image quickly changes along 
the micropipe axis, one deals with 2D rather than 1D object. In addition to the micropipes, crystals may contain other 
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voids which are spherical, capsule-like or faceted in shape. Their computer simulation needs 2D approach. The example 
will be given in the next section. 

 

Fig. 4  (A) The map of 
thickness dependence for 
three spherical voids. (B) 
The calculated image of the 
voids at the distance 10 cm 
from the crystal. (C) The 
calculated image of the 
voids at the distance 50 cm. 
(D) The experimental image 
of one spherical void. The 
energy is 16 keV, the 
source-to-crystal distance is 
34 m, and the crystal-to-
detector distance is 45 cm. 
See text for details. 

 

4.3 Computer simulation of spherical micro-voids in SiC crystal 

Spherical micro-voids can be found in SiC crystals grown by sublimation. With growth, they usually develop into 
faceted voids, which provide information on the crystal habit and fast growth directions. Armed with this information, it 
would be easier to control the density of defects, which is particularly useful for the growth on nonstandard surfaces. It 
is of interest to know how the size of spherical micro-voids depends on growth parameters. Some spherical voids can be 
small and thus their phase contrast will be weak. Image measurements on various distances are therefore necessary even 
in the far field region. Because the sizes and structures of images are different, computer simulations of their images are 
useful to restore the diameters of such voids. 
 We have performed 2D computer simulations on the base of Eqs. (1) − (3), but in two dimensions. The same integral 
from the same propagator should be added with y coordinate and the transmission function T(x,y) of the spherical void 
contains (1 − (x2 + y2)/R2)1/2 instead of (1 − x2/R2)1/2 in the argument of exponential (phase factor). The 2D images can 
be shown similar to the experimental images as the grey level maps. 
 The 2D convolution of the Fresnel propagator and the transmission function is calculated on the finite set of points 
with numbers N1*N2 and with the same step in both directions. As in the FIMTIM program, the method of Fast Fourier 
Transformation (FFT) is used. First, the Fourier image of T(x,y) is calculated. The result T(q,p) is obtained on the same 
set of points N1*N2 in the reciprocal space, but with the various steps Δq = 2π/(dN1), Δp = 2π/(dN2). Then the reverse 
Fourier image of the product T(q,p)P(q,Z)P(p,Z) is calculated on the same set of points. As a result, the square modulus 
of the wave function presents the image of the object on the set of points with the initial step in both directions. If 
necessary, the image can be convoluted with the Gaussian function to take into account the source size and the detector 
resolution. 
 Figure 4 shows the results of such simulations for the three spherical voids of various diameters 6, 8 and 10 µm. We 
used the 2048*1024 set of points with the step 0.05 μm. The monochromatic radiation is chosen with the photon energy 
16 keV. The source-to-crystal distance is 34 m. The panel A shows the map of thickness of the voids in a matter, 
namely, 2R(1 − (x2 + y2)/R2)1/2 together with the positions of the spherical voids. Here a black color corresponds to zero 
and a white color is for 10 μm.  
 The panel B shows the image (relative intensity) of the spherical voids at the distance 10 cm from the crystal. A point 
source and an ideal detector are assumed. Here a black color is used for 0.282 (minimum) and a white color for 2. The 
grey scale is linear. We note that the maximum of relative intensity is equal to 3.769 at the center of the right sphere, 
but all values more than 2 were replaced by 2 with the aim to show the background in the middle of grey scale. The 
image can be considered as an overexposed one. In reality very sharp peaks will be strongly smoothed by a convolution. 
 The panel C shows the images of the same objects at the distance 50 cm. Here a black color is used for 0.347 
(minimum) and a white color for 2 again, but the maximum is equal to 6.695. We note that only the central regions of 
the right and bottom voids are overexposed. One can see that the diameters of the rings correspond to the Fresnel zone 
diameters which increase with the distance. 
 The panel D shows the fragment of experimental picture obtained with the monochromatic radiation 16 keV 
(multilayer monochromator) at the distance z = 45 cm from the crystal. For this distance the diameter of the first Fresnel 
zone 2(λz)1/2 = 12 μm. A comparison with the calculated images allows one to conclude that the diameter of the void is 
approximately 10 μm. The experimental image does not contain fine details because it is smoothed by the source size 
and the detector resolution. 
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5. Origin of oblate micropipes 

To explain the reasons for deviations of the micropipe shape from the equilibrium cylindrical shape predicted by Frank 
[22], it is necessary to clearly understand the mechanisms and the stages of micropipes formation in the growing crystal. 
One possible scenario [24, 25] assigns a leading role to the coagulation of vacancies and includes the following main 
stages: (1) heterogeneous formation of dislocations elongated along the c axis and reaching the front of the crystal 
growth; (2) pipe diffusion of vacancies from the surface into the crystal bulk through the cores of these dislocations; (3) 
coagulation of these vacancies around the dislocation lines; (4) forming a continuous cavity (micropipe) around 
dislocations and leveling its surface by surface diffusion of vacancies. Under this scenario of micropipe formation, 
many of the features of their morphology, which are often observed in the experiment, become clear: (1) the instability 
of micropipe diameter, (2) the instability of its cylindrical shape, (3) the local curvature of micropipes, (4) the formation 
on the micropipes of large drop-like pores whose cross-section size is much larger than the cross-section size of the 
micropipes, (5) sudden breaks of micropipes, etc. Indeed, diffusion, coagulation and subsequent absorption-emission of 
vacancies by micropipes are strongly nonequilibrium processes, so that the micropipe formation can be determined by 
the process kinetics rather than by Frank’s thermodynamics [22]. 
 Consider now how one can use this scheme to explain the formation of oblate micropipes. Take more than one, as 
before, but a few dislocations that originated on one source (a large surface step, a pore, an inclusion of other material 
or foreign SiC polytype, etc.). In the simplest case, this can be a dislocation dipole or a pair of dislocations of the same 
sign. If these dislocations are located not too far from each other, then, during the vacancy coagulation, the newly 
generated micropipe can capture both the dislocations and immediately purchase at this a section elongated in the 
direction from one dislocation to the other. Divergence or convergence of dislocations in the crystal growth will cause a 
corresponding change in the cross section of such an oblate micropipe, while deviations of the dislocations in the 
directions at an angle to the imaginary line connecting them or, even more so, twisting of the dislocations around a 
common axis will be observed as twisting of the oblate micropipe. 
 Let us estimate the conditions under which the formation of such oblate micropipes is energetically favorable. In the 
case of dislocation dipole, a micropipe comprising both the dislocations has the distinct advantage that the dislocations 
annihilate inside the micropipe. Therefore, there is a gain in the dislocation strain energy and the dislocation core 
energy. At the same time, an increase in the micropipe volume, required to comprise the entire dipole, leads to 
corresponding increase in the energy of the micropipe free surface. The energy balance determines a critical size of the 
micropipe, which it cannot exceed. In the initial state (before the micropipe formation), the total energy of the 
dislocation dipole per its unit length is W1 = Gb2/(2π)[ln(d/rc) + 2Z], where G is the shear modulus, b is the Burgers 
vector magnitude, d is the dipole arm (equal to TD at the certain level along the micropipe axis), rc is the cut-off radius 
of the dislocation elastic fields on its core, and Z ≈1 is the dimensionless parameter characterizing the dislocation core 
energy. After the micropipe formation and dipole annihilation, the total energy of the system per unit length of 
annihilated dislocations can be estimated as W2 =  γ L, where γ is the specific energy of the crystal free surface and L is 
the average perimeter of the micropipe cross section. The micropipe formation is energetically favorable if the 
corresponding energy change is negative:  ΔWdd = W2 - W1 = γL - Gb2/(2π)[ln(d/rc) + 2Z] < 0. From this inequality, we 
get at once a limitation for L: L < Lc = Gb2/(2πγ)[ln(d/rc)+2Z], where Lc is a critical perimeter of the micropipe cross 
section.  
 The dependence of the energy change  ΔWdd on the dipole arm d is shown in Fig. 5(a) for the parameter values taken 
for 4H-SiC: c = 1 nm, G = 165 GPa, and γ = 0.2 Jm-2 [26]. The curves  ΔWdd(d) are built for three values of the Burgers 
vector: b = nc with n = 1, 2 and 3. The cut-off radius was taken equal to the Burgers vector magnitude: rc = b. In 
calculations, we assumed that the micropipe cross-section perimeter L is in direct proportion with the dipole arm d: 
L = ηd with η = 2.5 (the lowest value of η, η ≈ 2, corresponds to a flat slit, while its highest value η ≈ π corresponds to 
a circle). As is seen from Fig. 5(a), the maximum energy gain is reached at d ≈ 0.07, 0.21 and 0.47 µm for n = 1, 2 and 
3, respectively. At the same time, the micropipe formation remains energetically favourable for much larger values of d, 
until d < dc = Lc/2.5 ≈ 0.40, 1.82 and 4.40 µm for n = 1, 2, and 3, respectively. Oblate micropipes of such transverse 
diameters are often observed in our experiments. 
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Fig. 5  (a) Dependence of the energy change ∆Wdd on the dislocation dipole arm d for b = nc (n = 1, 2 and 3) at c = 1 nm, 
G = 165 GPa,  γ = 0.2 J m-2 and  η = 2.5. The inset shows a scheme of the dipole annihilation after an oblate micropipe has formed 
around it. (b) Dependence of the energy change ∆Wdp on the dislocation spacing d for b = nc (n = 1, 3 and 5) c = 1 nm, G = 165 GPa, 
 γ = 0.2 J m-2 and  η = 2.5. The inset shows a scheme of the dislocation agglomeration after an oblate micropipe has formed around a 
dislocation pair. 
 
 In the case when an oblate micropipe forms around a pair of dislocations of the same sign, the similar energy terms 
read: W1 = Gb2/(2π)[ln{R2/(drc)} + 2Z] and W2 ≈ γL + 2Gb2/π ln(2R/d). Therefore, the energy change due to the 
micropipe formation is  ΔWdp = W2 – W1 = γL + Gb2/(2π)[ln(16R2rc/d

3) - 2Z], where R is the parameter of screening the 
long-range elastic dislocation fields. We can estimate it as a half of the average distance between dislocations of 
opposite signs in the crystal. In our calculations, we used the value of R = 10 µm which corresponds to the dislocation 
density ~ 106 cm-2 typical for regions of dislocation generation in our samples. 
 The dependence of the energy change  ΔWdp on the dislocation spacing d is shown in Fig. 5(b) for the same values of 
the system parameters as before. The curves ΔWdp(d) are built for three values of the Burgers vector: b = nc with n = 1, 
3 and 5. It is seen from Fig. 5(b) that the formation of an oblate micropipe around a pair of identical dislocations with 
Burgers vectors of magnitude 1c and 3с is not energetically favorable. To form such a micropipe, the Burgers vector 
magnitude must not be smaller than 5c. At b = 5c, the micropipe size can vary from approximately 1.5 to 8.2 μm, and 
the maximum profit in the energy is for d ≈ 4 µm. Thus, in contrast with the previous case of a dislocation dipole, when 
the oblate micropipe formation is energetically favorable for any magnitude of the Burgers vector and for d < dc, here 
we have got two critical conditions for the oblate micropipe formation: b ≥ bc = 5c and dc1 < d < dc2. The interval of 
acceptable values of d is determined by the Burgers vector magnitude: the larger b the wider this interval. 
 Summarizing the above discussion, the formation of oblate micropipes can be explained by their trend to comprise 
some dislocations (dislocation bundle) at once with minimizing the micropipe surface. The largest size of the micropipe 
cross section is then approximately equal to the distance between the farthest dislocations in the bundle. If the 
dislocation bundle is a self-screened ensemble of dislocations, from a dipole to an arbitrary multipole, then the driving 
force of the dislocation agglomeration inside one micropipe is total annihilation of dislocations there, while the main 
limitation of such agglomeration is that the bundle size cannot be larger than its critical size dc. If the dislocation bundle 
consists of dislocations of the same sign (or of opposite signs but when the number of dislocations of one sign differs 
from the number of dislocations of the opposite sign), then the driving force of the dislocation agglomeration within one 
micropipe is a decrease in the strain energy density near the bundle. The main limitations in this case are that (1) the 
Burgers vector magnitudes of the residual dislocations must be larger than a critical value bc and (2) the transverse size 
of the bundle of residual dislocations (the largest distance between them) must be in the range between two critical 
values dc1 and dc2, which is determined by the value of b. Our numerical estimates of critical values dc, dc1 and dc2 are in 
good accordance with the sizes of oblate micropipes observed in our experiments. 

6. Concluding remarks 

Computer simulations are necessary to determine micro-object sizes and shapes from their phase contrast images 
recorded in the far field. Micropipes in SiC crystals are particular phase objects having small cross section sizes along 
the beam. Under Fraunhofer diffraction conditions the central part of the micropipe image is determined by the product 
DD0, hence by the cross section area, rather than by the diameters D and D0 across and along the beam. A broad 
spectrum of the pink SR beam weakly influences the central image part but leads to damping the oscillations, so only 
the first oscillations remain on each side. That is why it is useful to analyze the map of least square sum  χ2 as a 
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function of D and D0, which allows one to estimate the accuracy of the diameters restoring. We have discovered that the 
map demonstrates a weak localization of the area of small  χ2. 
 The 1D simulation approach allows us to restore only those micropipe cross sections which are constant in size and 
shape along the axes. By using a 2D approach these limitations are removed. Of course, the use of pink beam 
experimental data is not the best for the both 1D and 2D simulations. Another option is the use of a low 
monochromaticity SR beam (for example, with  ΔE/E = 10-1) that provides a sufficient temporal coherence length with a 
reasonably high intensity. 
 The origin of oblate micropipes can be a result of enhanced diffusion of vacancies along dislocation cores with their 
consequent coalescence and transformation into oblate micropipes comprising at once some dislocations (dislocation 
bundles) with minimizing the micropipe surface. 
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