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The results of observation of capsule-like voids in silicon carbide (6H-SiC) single
crystal by means of a phase contrast imaging technique with synchrotron radiation
at the Pohang Light Source as well as computer simulations of such images are
presented. A pink beam and a monochromated beam were used. The latter gives
more pronounced images but they still are smoothed due to a finite detector resolution
and the spatial coherence of the beam. Sizes and a structure of far field images are
different from these of the objects. The computer simulations allow us to reproduce
a shape and a size of the capsule-like void. C© 2014 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4896512]

I. INTRODUCTION

Silicon carbide (SiC) single crystals are hard and heat resistant materials. They have high
thermal conductivity, high electric field breakdown strength, high maximum current density, and
very low coefficient of thermal expansion. This is why they are more promising than silicon for high-
power devices. Significant advancements in the growth of SiC by sublimation technique (see, e.g.,
reviews1, 2) have stimulated mass production of large diameter and good quality boules. However,
most SiC wafers still contain imperfections which can be correlated with degradation of SiC based
devices, and voids of various shapes and origins are particularly damaging.

Micropipes are known to nucleate at second phase inclusions,3 foreign polytype boundaries,4

cavities,5, 6 etc. in the shape of a cylinder with circular or elliptic cross section. X-ray topography1, 3, 5

and phase contrast imaging7–15 allows one to observe them non-destructively inside the crystal bulk.
The phase contrast technique provides information due to a phase shift in an x-ray coherent

wave. It is widely used in materials research for high resolution imaging.16–19 In detecting micropipes
it has some difficulties because the phase shift created by a micropipe is small, and the size of elliptic
cross section is comparable with the detector resolution (about one micron). The image contrast is
very weak and the image is of small size when detected at a small distance from a crystalline sample,
i.e. in the near field. To overcome these problems we registered images at rather large distances,
i.e. in the far field, using a pink synchrotron radiation (SR) beam. In this article the term “pink SR
beam” is used for the radiation from a bending magnet without a monochromator.

Under the far field conditions an image has a larger size compared to a small object, but a
different structure. Therefore an inverse problem solution is necessary. The pink beam provides
a large number of photons which are necessary for the registration of signal with a low statis-
tical noise. Despite the absence of a monochromator the pink beam exists naturally because the
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intensity of high photon energies decrease, while the photons of low energies are absorbed in a thick
(490 μm) crystalline sample.

For the solution of the inverse problem we elaborated a special computer program. The program
simulated phase contrast images of micropipe for various photon energies and summed them accord-
ing to the synchrotron radiation effective spectrum to one pink beam image (see15 and references
therein). Such an image depends on the two elliptic cross section diameters of the object. They were
varied to find the diameters which fitted experimental phase contrast profiles to calculated ones. It
was shown that for the micropipes with very small cross sections the two diameters could not be
reproduced, and only the cross section area could be obtained with a good accuracy.11, 12

In this work we report on capsule-like voids that are for the first time observed. The voids are of
different kind from the objects investigated in our previous works. Such a void looks like a cylinder
with a circular cross section and a finite length ended in hemispheres. In addition, we perform
2D calculation for simulating the images of the voids, which is different from 1D calculation for
micropipes.7–15

We note that voids of various shapes and sizes can be observed in SiC crystals by the phase
contrast technique. However, the capsule-like voids have a simple shape, a small size, and their origin
is of interest from the point of view of initial void formation. In this work SiC crystals were grown on
“a-plane” [i.e.,

(
1120

)
plane] seeds when dislocated micropipes were not formed.20 However, other

voids formed into the crystal volume, grew, obtained faceted shapes characteristic of the crystal
habit, or dissolved. Capsule-like voids could move in the direction determined by a temperature
gradient and coagulate into tubular voids.

It seems to us that a capsule-like void grows due to motion of vacancies to a void. They can
come inside the void but can not go outside due to elastic forces. Under isotropic conditions the
void shape is spherical. Under the conditions, where the crystal has some direction of fast vacancy
movement, the sphere is transformed to the capsule-like object.

We demonstrate the peculiarities of the phase contrast images of such voids by means of
computer simulations on the base of the theory of x-ray phase contrast. We obtain the parameters of
the capsule-like void from a comparison of the experimental images with the simulated ones.

II. EXPERIMENT

The samples were prepared from a 6H-SiC boule produced by means of a-face growth using
profiled seeds. To obtain crystals free from micropipes Ohtani et al.20 reported that the growth on
the

(
1120

)
surfaces was effective resulting in a reduced stacking fault density. However, a large

density of dislocations can remain within the crystal. To reduce dislocations threading from the seed
the growth on mesa structures can be used. Lateral growth on the sides of mesas was accompanied
by a decrease in the density of threading dislocations.21, 22 Each of these procedures to prevent the
propagation of micropipes or dislocations has been used by others,20–22 but here they are combined
in one procedure.

First, a 6H-SiC ingot was grown on the (0001) face of a SiC seed by a sublimation sandwich
method23 at the growth temperature 2100-2200◦C with the growth rate of 0.5 mm · h−1 and sliced
into

(
1120

)
wafers. Micropipe and dislocation densities were 20 cm−2 and 104 cm−2, respectively. In

the second step, these wafers were used as a-plane seeds for further growth in the
[
1120

]
direction. A

groove network 50 μm wide, 50 μm deep and having a spacing of 500 μm was made by a diamond
saw on the surface of each seed, and the seed surfaces were etched.

Mokhov et al.22 reported studies of the structural quality of the crystals grown on (0001) mesa
surfaces. In this case, KOH-defect selective etching analysis of the wafers cut perpendicular to the
[0001] growth direction showed that there were no etching features in the regions above the flattened
grooves. The density of etching features in the central regions of flat mesas were nearly equal to
those of the seeds. The authors proposed that dislocations and micropipes propagated into the grown
crystal from the seed rather than generated during growth, because neither the lateral growth from the
mesa sidewalls nor the layer-by-layer growth on the flat mesas could lead to these defects formation.
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FIG. 1. Schematic of experiment. See text for details.

FIG. 2. The images of two capsule-like voids. Top panel: polychromatic radiation. Bottom panel: monochromatic (16 keV)
radiation.

In the present work the growth on
(
1120

)
mesa substrates was performed with the purpose to control

dislocation density.
The conditions for the a-plane growth were almost the same as above described. The Argon

pressure in the growth chamber was 1 · 10−3–7 · 10−3 MPa. The grown crystal was sliced along the
growth direction into (0001) wafers mechanically and chemically polished on both sides. Residual
damage on the sample surface contributes to the image and should be removed.

The wafers were investigated by the phase contrast imaging technique using the 6D X-ray
micro-imaging beamline at the Pohang Light Source. The beam source with a size 160 μm × 60 μm
(H × V) from a bending magnet was located 34 m from a sample. The experimental setup is shown in
Fig. 1. Behind the sample, the radiation is converted into visible light by a CdWO4 crystal-scintillator
(150–200 μm thick). The visible light is reflected from a polished silicon mirror with the aim to
reach CCD camera. The light image is magnified by a lens. The CCD matrix of pco.4000 camera
(supplied with a thermo-electrical Peltier cooler) had 4008 (H) × 2672 (V) pixels size, one pixel
being of 9 μm (H) × 9 μm (V). Using a 20× lens the effective pixel size was 0.45 μm, and the view
field was 1804 × 1202 μm2.

Polychromatic (pink) beam as well as a high-flux monochromatic beam (made with a multilayer
monochromator) were utilized. In the case of a pink beam the energy spectrum, shown in Figure 2
of our previous article,15 had a maximum intensity at 16 keV and FWHM as 11 keV. The temporal
coherence length was L p

tc = 1.2 Angstroms.15 It increased to Lm
tc=194 Angstroms in the case of the

multilayer (�E/E = 0.4% Mo/B4C) tuned to the energy E = 16 keV.
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All studied wafers contained sparse voids which could be classified into micro, meso and macro
scale categories. The micro scale category included the biggest population of spherical and capsule-
like voids. The meso scale voids looked tubular with smooth walls, and the macro-voids obtained
asymmetric hexagonal shapes.

Figure 2 shows the parts of two images recorded from one fragment of the SiC wafer with
the pink (the top panel) and the monochromated (the bottom panel) beams. The sample-to-detector
distance is 35 cm. The sample thickness is 50 μm. One can see that the monochromated beam allows
us to obtain a more pronounced picture. However, exposure times were 25 ms and 190 s for the pink
and the monochromated beams, respectively.

III. COMPUTER SIMULATIONS

An algorithm for a computer simulation of x-ray phase contrast images was described many
times since the work.24 The sources of coherent synchrotron radiation are separate electrons inside
the storage ring which radiate the narrow beam. The total radiation inside the beam at long distance
z0 from the source, i.e. in front of a sample, can be split into monochromated harmonics (see, for
example,25 for details) which can be approximated by

E(x, y, z0) = exp(i K z0)P2(x, y, z0) (1)

where K = ω/c = 2π /λ, ω is the frequency of radiation, c is the speed of light, λ is the wavelength,
and

P2(x, y, z) = P(x, z)P(y, z), P(x, z) = 1

(iλz)1/2
exp

(
iπ

x2

λz

)
. (2)

Here we use a Cartezian coordinate system with the z-axis along the beam (optical axis) and the x,
y axes along the horizontal and vertical axes in the plane normal to the beam.

The formulae (1) and (2) correspond to the paraxial approximation which is valid for the x-ray
radiation with a good accuracy. The object can be described by a transmission function. We note that
the phase factor exp (iKz) can be omitted because it does not influence the intensity which is only
registered by a detector. Our object is a void inside the crystal in the form of a plate. The crystal
itself does not influence the intensity distribution and causes only a homogeneous decrease in the
intensity due to absorption.

We denote as t0 a maximum thickness of the void and consider a part of the crystal plate of this
thickness. The void influences the radiation field by increasing the phase and the amplitude of the
wave as compared with the part of the crystal without the void. This phenomenon can be taken into
account by the factor

T (x, y) = exp(i K [δ − iβ]t(x, y)) (3)

where δ and β are the refraction and absorption parameters so that the complex index of refraction
of the material is n = 1 − δ + iβ, and t(x, y) is a variable thickness of the void along the optical
axis. A usage of (3) is convenient for the calculation because T(x, y) equals unity outside the void.
After the calculation we need to multiply the intensity by a factor exp (−μ0t0) to take into account
the absorption inside the slab. Here μ0 = 2Kβ is a linear absorption coefficient.

The wave field at the distance z1 behind the crystal can be calculated within the Kirchhoff
integral relation as a convolution

E(x, y, zt ) =
∫

dx1dy1 P2(x − x1, y − y1, z1)T (x1, y1)P2(x1, y1, z0) (4)

where zt = z0 + z1. This integral can be transformed to the equivalent form which is more convenient
for a calculation,

E(x, y, zt ) = P2(x, y, zt )
∫

dx1dy1 P2(xr − x1, yr − y1, zr )T (x1, y1), (5)
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FIG. 3. A gray map of the function t(x, y), the black color for t = 0, the white color for t = t0 = 7 μm.

where xr = xz0/zt, yr = yz0/zt, zr = z1z0/zt. It is convenient to consider a relative wave field

A(x, y, zt ) = E(x, y, zt )

P2(x, y, zt )
(6)

and to transform the expression to the integral of finite limits

A(x, y, zt ) = 1 +
∫

dx1dy1 P2(xr − x1, yr − y1, zr )[T (x1, y1) − 1]. (7)

Finally we have the expression for the phase contrast, which is registered by a detector, as
follows

C(x, y) = |A(x, y, zt )|2 exp(−μ0t0) (8)

For the capsule-like void with a cylindrical cross section we use the formula for t(x, y),

t(x, y) = t0

(
d − y2

R

)1/2

(9)

where t0 = 2R, and

d = 1 −a < x < a
d = 1 − (x + a)2/R2 x < −a
d = 1 − (x − a)2/R2 x > a

(10)

In this case we have only two parameters: the curvature radius R and the length of the region
having a constant cross section 2a. The calculation of the convolution (7) was performed by means
of two Fourier transformations. First, we calculate the Fourier image of [T − 1], then multiply it
by the Fourier image of P2(x, y, zr) and then calculate the reverse Fourier image. The procedure of
FFT (fast Fourier transformation) was performed on the set of 2048*1024 points with the step of
0.05 μm.

IV. DISCUSSION AND CONCLUSIONS

We have performed simulations of phase contrast images for the parameters of the experiment,
i.e. z0 = 34 m, z1 = 35 cm, energy E = 16 keV, a = 20 μm and various values of R with the aim
to obtain the same image as shown in Figure 2. We have found that R = 3.5 μm is the value which
provides the best fit. The function t(x, y) within the calculation area is shown in Figure 3. We use the
gray scale with the black color for t = 0 and the white color for t = t0 = 7 μm.

The calculated phase contrast image for a point source (fully coherent) is shown in the top panel
of Figure 4. To show the contrast perfectly we use the black color for a minimum relative intensity
0.26 and the white color for a maximum 3.47. One can see that the image does not coincide with the
t(x, y) distribution, which is proportional to the phase shift map. The reason is that the size of void is
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FIG. 4. The calculated image (phase contrast) of a capsule-like void. Top panel: point source and ideal detector resolution,
the black color corresponds to 0.26, the white color is for 3.47. Bottom panel: a smoothed image after a calculation of
convolution with a Gaussian having FWHM 2 μm vertically and 4 μm horizontally.

not very small and the void works partially as a focusing element. It is known26 that the focal length
for such an element f = R/2δ = 67 cm (δ = 2.61 · 10−6) for considered parameters.

The focusing can explain the existence of black area and the narrow white area in the center of
calculated map. On the other hand, the focusing phenomenon takes place for a refraction element
(large object) which makes a huge maximum phase shift p = Kδt0. Here it is not the case because
p = 1.48 therefore our object is mainly diffraction element. For example, for R = 5 cm the calculated
image has the white area of smaller size while the focal length becomes larger.

The existence of interference fringes is also due to a diffraction nature of scattering. We note
that the picture does not show very small interference fringes due to poor resolution of the image,
but they are seen in the original calculated image. Such fringes cannot be resolved by modern CCD
detectors with an optical magnification. We note as well that the synchrotron radiation is partially
coherent due to a finite size of the source. The Pohang Light Source has a size of 60 μm vertically
and 160 μm horizontally.

It is well known that a shift of point source on the distance x0 from the optical axis leads to a
shift of the picture as a whole at the detector on the distance xd = x0z1/z0. Therefore for a comparison
with the experiment the picture obtained with the point source should be smoothed over the region
0.6 μm vertically and 1.6 μm horizontally. They are rather small values. The more crucial is the
detector resolution. The effective pixel size of the experimental images is 0.45 μm, but the real
detector resolution is larger.

The bottom panel of Figure 4 show the image which was obtained from the top panel image
by means of convolution with the Gaussian having FWHM (full width at half maximum) 2 μm
vertically and 4 μm horizontally. This image looks like the experimental image shown in the bottom
panel of Figure 2. To obtain the image with the pink beam it is necessary to calculate the images
for various energies and to make a summation of all images according to effective spectrum to one
image. It is clear that such a procedure makes the contrast of the image to be weaker.

However, as follows from Figure 2, use of a monochromated beam does not reveal fine pecu-
liarities of the image which can be calculated with a fully coherent beam. The main reason is the
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insufficient detector resolution. Although the image shows more contrast the exposure time increases
crucially.

In conclusion, using computer simulation of phase contrast images we determined the shape
and the size of capsule-like micro-voids in the crystalline wafer of 6H-SiC. The (0001) wafer was
cut out from the boule grown on the

(
1120

)
plane seed with a regularly grooved surface. High-flux

multilayer monochromator could not reveal the fine features visible on calculated (fully coherent)
images. Therefore a usage of the monochromator provides poor advantages compared with a pink
beam. At the same time, the simulated images were in a good agreement with the experimental ones.
Despite a finite detector resolution and a limited spatial coherence, we successfully reproduced the
micro-void parameters. The images measured in the far field differ from the objects themselves, and
to understand a void nature one has to perform the computer simulation.

The voids could form into a grown SiC crystal because of the grooves made on
(
1120

)
surface

of the seed which, in contrast to those on (0001) surface, failed to flatten. The vacancies were able to
appear at the faces of the grooves, and their migration occurred quite easily. Suggestively, a strong
temperature gradient made the voids obtain an elongated shape. The conditions for the capsule-like
voids to develop into other types of voids, e.g., faceted or tubular ones, need further study.
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