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1. INTRODUCTION 

Hexagonal silicon carbide (SiC) is a promising
material for use in the design and fabrication of power
semiconductor devices. Owing to the improvement of
production technologies for SiC ingots of large diam�
eter, the use of this material is gradually becoming one
of the main directions in the development of high�cur�
rent electronics. In recent years, the diameter of com�
mercial SiC single crystals has been increased from 50
to 100–150 mm, while the density of defects has been
decreased by several orders of magnitude. 

In particular, the density of micropores threading
over the entire length of the ingot has been decreased
to less than 1 cm–2 [1]. These pores in the form of
pipes, as has been commonly believed, are formed on
superdislocations with large Burgers vectors. The
model of a superdislocation with a hollow core was
proposed in the middle of the last century by Frank
[2]. Based on the energy minimization condition for a
screw dislocation with Burgers vector b and a hollow
core with radius r0, Frank derived the linear relation�
ship between r0 and b2: r0 = (Gb2)/8π2γ, where G is the
shear modulus of the crystal in the isotropic approxi�
mation and γ is the specific free surface energy of the
crystal. The validity of this formula was experimentally
confirmed in a number of studies. Using the disloca�
tion core radius r0 measured by scanning electron

microscopy (SEM) [3] or atomic force microscopy
(AFM) [4–7] and the Burgers vector measured by the
methods of AFM [4, 5], synchrotron radiation topog�
raphy [3], transmission electron microscopy (TEM)
[6], or polarized light microscopy [8], the authors of
[3–6, 8] plotted the dependence r0 ~ b2 and deter�
mined the surface energy γ of the crystal. However, for
the shear modulus G = 200 GPa, the values of γ
obtained in these works differed significantly: γ = 4.0,
0.20, 0.14, 0.79, 0.93, and 2.0 J/m2 for r0 = 0.09–0.16,
0.05–2.10, 0.025–6.0, 0.1–6.0, and 0.05–0.90 μm,
respectively. 

The results obtained from investigations of the
characteristics of micropipes were used in the develop�
ment of different models of their formation. Strunk
et al. [6] proposed a model for the formation of mixed�
type superdislocations on pileups of partial disloca�
tions. Other researchers gave evidence in favor of the
fact that hollow cores are typical of screw�type dislo�
cations [9], which can nucleate in inclusions of the
second phase [10] or in the process of association of
nuclei in the initial stage of the crystal growth [7].
Each model offered its own answer to the question as
to why single dislocations (with b = 1c, where c is the
lattice parameter of the SiC crystal) with Burgers vec�
tors of the same sign are attracted to each other to form
a superdislocation. The reasons were considered to be
reactions occurring in regions of dense dislocation
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pileups—near the boundaries of misoriented domains
[11], inclusions of other polytypes [5, 12], and clusters of
stacking faults [6],—as well as effects of repulsion
between the spiral growth steps on a growing surface [12]. 

The progress made in the production of high�qual�
ity crystals has confirmed the validity of the aforemen�
tioned models. A decrease in the number of second�
phase inclusions, a decrease in the density of defect
boundaries, and an increase in the quality of the crys�
tal structure at the initial stage of the growth led to a
substantial decrease in the density of micropipes and,
in some cases, even to their absence in the material [1].
However, there is a reason to believe that not all the
known features of the formation of micropipes have
already found the explanation, and a successful elimi�
nation of these defects requires further investigation. 

First, the large difference in surface energies γ
obtained by different authors suggests that the forma�
tion of micropipes is determined, to a large extent, by
the kinetics of nucleation and interaction of defects
rather than by the Frank thermodynamics. In a rela�
tively early paper by Augustine et al. [13], it was noted
that dislocations can transform into micropipes under
the influence of changes in the growth conditions, in
particular, temperature and pressure, which can
induce the migration of point defects over dislocation
cores. At present, it has been established that the
kinetic processes of overgrowing of micropipes can be
explained by the diffusion outflow of vacancies from a
micropipe [14]. 

Second, experimental evidence in support of each
of the aforementioned models was obtained by meth�
ods with different restrictions. The surface�sensitive
SEM and AFM methods can reveal growth pits and
spirals in places where micropipes outcrop on the
growth surface. However, the shape of a growth pit
does not reflect the shape of a micropipe over the
entire path of its propagation in the bulk of the crystal.
The optical microscopy technique cannot resolve fine
details of the morphology of small micropipes. The
TEM method, on the contrary, has a very high resolu�
tion for images of micropipes with a radius of a few
microns, which are distributed with a low density. The
X�ray topography and polarized light microscopy
techniques do not reveal the shape of a micropipe.
Currently, only the X�ray phase contrast, which can be
observed on synchrotron radiation sources under con�
ditions of high spatial coherence, makes it possible to
investigate the sizes and shape of micropipes in the
bulk of the crystals [15]. A combination of X�ray phase
contrast with topography in a synchrotron radiation
beam provides the most comprehensive information
about these defects [16]. 

Finally, it is known that the removal of the causes of
micropipe nucleation does not always lead to the over�
growing of the micropipe itself. In particular, inclu�
sions of other polytypes [17, 18] and slit�shaped pores
formed along their boundaries [19, 20] are overgrown

according to the mechanisms considered, for example,
in [16]. However, dislocations generated by inclusions
can transform into micropipes that are persistently
overgrowing throughout the rest of the length of the
ingot. Until now, it was thought that single dislocations
generated by elastic stresses at the boundaries of poly�
types form superdislocations due to the reactions [5,
12] and micropipes according to the Frank model [2]. 

Using the technique of X�ray phase�contrast
microscopy in combination with computer simulation
of images, in this work we investigated micropipes at
the boundaries of inclusions of other polytypes. It
turned out that, contrary to the Frank model, they can
have not only a circular cross section but also an ellip�
tical cross section whose sizes change along the
micropipe axis. These and other interesting features of
the formation of micropipes will be explained below in
the framework of a new model of the formation of
micropipes through the pipe diffusion and coagulation
of vacancies on the dislocation cores. 

2. EXPERIMENTAL TECHNIQUE 

The X�ray phase�contrast images are formed as a
result of the diffraction of synchrotron radiation by a
sample containing electron density fluctuations, for
example, micropores. Locally changing the phase of
the incident plane wave, inhomogeneities form a dif�
fraction pattern, which can be recorded in both the
near and far fields, i.e., either in the form of a contour
image or as the interference of a wave scattered by
defects with unperturbed radiation [21]. The incident
radiation should be coherent. The spatial coherency is
determined by the quantity α = S/z0, where S is the
transverse size of the source and z0 is the distance from
the source to the sample. The temporal coherence in
the absence of a monochromator is determined by the
width of the synchrotron radiation spectrum, which is
caused by the electron energy. In the high�energy
range, the intensity of synchrotron radiation naturally
decreases with an increase in the energy. In the low�
energy range, the radiation is absorbed by all objects
encountered in the path of the beam, including the
sample. This results in the formation of a spectral peak
with the maximum at an energy E and a half�width
ΔE. The X�ray imaging experiments were performed
using synchrotron radiation from the 6D X�ray micro�
imaging beamline at the Pohang Light Source
(Pohang, South Korea). The bending magnet pro�
vided the vertical size of the focus S = 60 μm at the dis�
tance z0 = 32 m from the sample. In this case, the spa�
tial coherence length was Ts = λ/α = 42 μm, which
significantly exceeded the diameter of conventional
micropipes in SiC (up to 10 μm). For SiC wafers with
a thickness of ~500 μm, the spectral peak with the
half�width ΔE = 24 keV (Δλ = 0.52 Å) had a maximum
at E = 16 keV (λ = 0.775 Å), and the temporal coher�
ence length Tt was 1.2 Å [15, 22]. 
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The schematic diagram of the measurements is
shown in Fig. 1. Slit 1 generates an X�ray beam of
specified size. The beam passes through sample 2,
behind which interference images of micropipes arise.
These images are recorded on a phase�contrast micro�
scope consisting of elements located inside the rectan�
gle drawn by the dashed line. Scintillation crystal 3
converts the diffracted radiation into the visible light.
The radiation from the scintillation crystal is directed
by mirror 4 into optical lens 5, which forms an image
on detector array 6. The lens cannot increase the reso�
lution of the interference pattern. However, increasing
the size of the interference pattern to the size of the
visual field of the detector, it effectively decreases the
size of the pixel. For example, if the detector has a res�
olution of 3296 × 2472 pixels and a pixel size of
5.5 × 5.5 μm, the optical magnification 20× makes the
visual field of the detector equal to 906 × 680 μm, thus
effectively decreasing the pixel size to 0.275 μm. 

The profiles of the relative intensity distributions
were measured across the images of micropipes with
the use of the ImageJ program. The cross�sectional
diameters of the micropipes were calculated using the

FIMTIM (Fit Micro�Tube Image) program [15, 23].
This program was developed for numerical calcula�
tions of the intensity profiles for monochromatic syn�
chrotron radiation harmonics on a grid of points in the
range from 5 to 40 keV with their subsequent summa�
tion taking into account the actual spectrum [15] and
absorption. The diameters of the micropipe elliptical
cross sections D and D0 (across and along the synchro�
tron radiation beam, respectively) were determined
automatically from the condition that the theoretical
and experimental intensity profiles coincide with each
other. In order to estimate the accuracy of the result,
the program calculated the dependence of the quantity

χ2 – , where  is the minimum sum of the
squared deviations, on the desired parameters D and

D0 and plotted the map χ2(D, D0) –  in the vicinity
of the minimum point [22]. 

The SiC wafers were prepared from a 4H�polytype
crystal grown by sublimation [17]. The crystal growth
occurred at a temperature of 2100°C in an argon
atmosphere at a rate of 350 μm/h. The crystal con�
tained layered inclusions of the 6H polytype. The 6H�
SiC layers aligned parallel to the (0001) plane were
located approximately in the middle of the 4H�SiC
ingot and had a small thickness along the [0001]
growth axis. The surface of the sample cut parallel to
the growth axis crossed the boundaries of inclusions.
According to the data of optical microscopy (not pre�
sented in the paper), there were no micropipes in the
region between the seed and the boundaries of the
inclusions. They were formed near the inclusions, as
noted, for example, in [12, 16], and propagated up to
the free surface of the crystal. Before measuring the
images, the surface of the samples was carefully pol�
ished to remove the damaged layer and roughness.
During the measurements, the samples were located
perpendicular to the beam so that the micropipe axes
had the horizontal direction. In this case, the spatial
coherence was determined by the minimum size of the
source in the vertical direction: S = 60 μm. 

3. EXPERIMENTAL RESULTS 

The inset in Fig. 1 shows a phase�contrast image of
the micropipe located perpendicular to the synchro�
tron radiation beam. The image was obtained in the far
field, because the diameter of the first Fresnel zone
2r1 = 2(λz1)

1/2 = 11 μm (where λ = 0.775 Å and the
distance from the detector to the sample z1 = 40 cm) is
larger than the diameters of the micropipes [3, 5, 6, 8].
It has the form of a universal averaged intensity profile
[24], which consists of the central peak and strongly
weakened lateral oscillations having a minimum and a
maximum. The distance between the oscillations
seems to be constant along the micropipe axis. It may
seem that the cross�sectional size is equal to the size of
the central bright band between two dark bands. How�
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Fig. 1. Schematic diagram of the experiment: (1) entrance
slit, (2) sample (SiC plate), (3) scintillation crystal, (4)
mirror, (5) optical lens, and (6) detector. Arrows indicate
the direction of the synchrotron radiation beam. The inset
shows a the phase�contrast image of the micropipe. 
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ever, this size is equal to the diameter of the first
Fresnel zone. The true diameters of the micropipe in
the far field are manifested only through the contrast,
and their determination requires the computer simu�
lation of the image. 

The experimental profiles of the relative intensity
distributions were measured at two levels along the
micropipe axis: M1 and M2. Since the far�field image is
determined entirely by the first Fresnel zone, changes
in the shape and sizes of the cross section affect the
structure of the image not only across but also along
the axis within 2r1. No matter how abrupt jumps in the
diameter can be, they cannot be found by fitting the
one�dimensional cross sections when the distance
between the levels is less than 2r1. Hence, the distance
between the levels M1 and M2 was chosen deliberately
larger: 8.2r1 = 90 μm. 

Using the FIMTIM program, we determined the
diameters D and D0 by comparing the calculated and
experimental intensity profiles. The results of the cal�
culations for the M1 level are presented in Fig. 2. Sym�
bols in Fig. 2a depict the normalized experimental

curve, which for  = 7.745 × 10–5 coincides with
the theoretical curve (solid line). In this case, the
micropipe has the following cross�sectional diameters:
D = 1.76 μm and D0 = 1.52 μm. Figure 2b shows the

map of the distribution χ2(D, D0) –  in the vicinity
of the minimum point. The black and white colors on

this map correspond to  = 7.824 × 10–5 and

= 9.290 × 10–5, respectively. All values of χ2 >

 were replaced by . The region of small values

χ2 has the form of an approximately symmetrical
hyperbole with the minimum size along the direction
D = D0 and with the maximum size in the perpendic�
ular direction. The absence of localization in the
region of the minimum reflects a specific feature of the
far�field images of micropipes: a change in the cross�
sectional sizes of the micropipe does not lead to a
change in the size of its image and affects only the con�
trast scaled by the cross�sectional area [24]. By multi�
plying D and D0, we obtain the cross�sectional area at
the M1 level: σ1 = πDD0 = 8.4 μm2. The small distor�
tion of the symmetry of the map along the axes D and
D0 (D/D0 = 1.2) shows that the cross section has a
slightly oval shape. 

It is interesting to note that, for the M2 level, the
program gave quite different values of the cross�sec�
tional diameters: D = 2.54 μm and D0 = 1.18 μm. The
region of the minimum that corresponds to this level is
shown in Fig. 2c. It can be seen now that the hyper�
bolic distribution of quantities χ2 is significantly more
extended along the axis of the transverse diameter D,
which indicates an increase in the ellipticity of the
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cross section: D/D0 = 2.2. By multiplying the new val�
ues of the cross�sectional diameters, we obtain the
cross�sectional area at the M2 level: σ2 = 9.4 μm2. 
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Fig. 2. Results of the computer simulation of the
micropipe image shown in Fig. 1. (a) Experimental (sym�
bols) and calculated (solid line) profiles of the relative
intensity at the M1 level, which coincide with the best

accuracy of  = 7.745 × 10–5. (b, c) Maps of the distri�
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The micropipe shown in Fig. 1 is parallel to the
crystal growth axis. However, some other micropipes
deviated from the growth axis by rather large angles.
The image of one of the inclined micropipes is shown
in Fig. 3. Generally speaking, for inclined micropipes,
the parameters of their cross sections by a synchrotron
radiation beam are not equal to the true values of the
cross�sectional diameters. Let us assume that the
micropipe shown in Fig. 3 has a circular cross section
with a diameter 2r0. It is also assumed that the
micropipe axis forms an angle ψ with the vertical
direction parallel to the crystal growth axis and does
not have inclination angles with respect to the other
axes. The parameters D and D0, which were calculated

with the FIMTIM program from the intensity profiles
measured perpendicular to the crystal growth axis
(Fig. 3), are related to the true diameter 2r0 by the
expressions D = 2r0/sinψ and D0 = 2r0, where D > D0.
At the same time, the intensity profile can be mea�
sured across the micropipe axis if the image shown in
Fig. 3 is clockwise rotated by the angle ψ. In this case,
the FIMTIM program will calculate the correct values
of the cross�sectional diameters. However, it should be
kept in mind that the rotation of the micropipe image
affects the accuracy in the determination of these
diameters. The program takes into account the size of
the source in accordance with the minimum (vertical)
projection of the focus S, and the rotation angle ψ
increases the size by an unknown value. 

The intensity profiles were measured across the
inclined micropipe by rotating the image with the
ImageJ program. The distance between the levels was
small, i.e., 2.6r1 = 29 μm, but large enough to ensure
that the program would respond to changes in the
cross section. According to the simulation data
obtained at the M3 level, the inclined micropipe has an
approximately circular cross section: D = 1.96 μm and
D0 = 1.84 μm; D/D0 = 1.06. However, at the M4 level,
the cross section becomes substantially elliptical: D =
5.32 μm and D0 = 1.32 μm; D/D0 = 4.03. The cross�
sectional areas at the levels M3 and M4 are equal to
σ3 = 11.3 μm2 and σ4 = 22.0 μm2, respectively. 

The micropipe parameters obtained from the com�
puter simulations are presented in the table. After
studying many other micropipes in the 4H�SiC crystal
and other such crystals, as well as in 6H�SiC crystals
with 4H� and 15R�polytype inclusions, we came to the
conclusion that many micropipes have the morpho�
logical features described above. First, the cross�sec�
tional sizes of the micropipes change along their axes.
Second, many micropipes are characterized by devia�
tions from the cylindrical shape, which is characteris�
tic of the cavity around the core of the screw superdis�
location. Third, the cylindrical shape of some
micropipes is unstable and can turn into an elliptical
shape. Fourth, the micropipes have local curvatures.
Finally, they can suddenly break down in the crystal.
These features cannot be explained in the framework
of the already known models for the formation of
micropipes [6, 7, 10, 12]. In the next section, we will
discuss the reasons for the deviation of the shape of
micropipes from the equilibrium cylindrical shape
predicted by Frank [2] and propose the vacancy mech�
anism of the formation of nonequilibrium micropipes. 

4. DISCUSSION OF THE RESULTS 

One of the possible scenarios for the formation of
micropipes with a variable cross section suggests that
the leading role belongs to the coagulation of vacan�
cies and the scenario itself includes the following main
stages: (1) the heterogeneous formation of disloca�

Growth
direction

30 μm

M3

M4

Fig. 3. Image of the inclined micropipe. The simulation of
the intensity profiles was performed for the levels M3 and
M4. The arrow indicates the direction of the crystal
growth. 

Parameters of the micropipes: diameters D and D0 (across
and along the synchrotron radiation beam, respectively)
and cross�sectional area σ at the levels Mi (i = 1–4), deter�

mined using the FIMTIM program up to 

Mi D, μm D0, μm σ, μm2

M1 1.76 1.52 8.4 7.744 × 10–5

M2 2.54 1.18 9.4 7.295 × 10–5

M3 1.96 1.84 11.3 8.996 × 10–5

M4 5.32 1.32 22.0 4.501 × 10–5
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χmin
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tions that are extended along the c axis and reach the
front of crystal growth; (2) the pipe diffusion of vacan�
cies from the surface deep into the crystal over the
cores of these dislocations; (3) the coagulation of these
vacancies around the dislocations; and (4) formation
of a continuous cavity (micropipe) around the dislo�
cations and the flattening of the surface of this
micropipe through the surface diffusion of vacancies.
The diffusion, coagulation, and subsequent absorp�
tion–emission of vacancies by the micropipe are
strongly nonequilibrium processes, so that the forma�
tion of micropipes is determined, to a large extent, by
the kinetics of their occurrence rather than by the
Frank thermodynamics [2]. 

Now, we discuss how this scheme can explain the
formation of micropipes with an oblate cross section.
Let us consider not one dislocation, as before, but a
few dislocations generated at the same stress concen�
trator (a large surface step, a pore, a foreign inclusion,
an inclusion of another polytype, etc.). In the simplest
case, it can be a dislocation dipole (Fig. 4a) or a pair of
dislocations of the same sign (Fig. 4b). If these dislo�
cations are located not too far from each other, then
during the coagulation of vacancies, the formed pore
can trap both dislocations simultaneously and
acquires a cross section extended in the direction from
one dislocation to the other dislocation. The diver�
gence or convergence of dislocations during the crystal
growth will cause the corresponding changes in the
cross section of this “oblate” micropipe, and the devi�
ations of dislocations in the directions at an angle to
the imaginary line connecting them or, even more, the
twisting of dislocations around the common axis will
be perceived as a twisting of the “oblate” micropipe. 

We estimate the conditions under which the forma�
tion of oblate micropipes will be energetically favor�
able. For a dislocation dipole, the coverage of both dis�
locations by the micropipe has the obvious advantage
that, in this case, the annihilation of dislocations
occurs within the micropipe and the dislocation dipole
transforms into two dislocation half�loops, namely,
the “upper” and “lower” half�loops (in these half�
loops, the dislocations with Burgers vectors b and –b
are bound to each other through the steps on the
“upper” and “lower” surfaces of the micropipe,
respectively). This gives a gain in the elastic energy of
dislocations and in the energy of their cores. At the
same time, an increase in the micropipe volume,
which is required to cover the entire dipole, leads to an
increase in the free surface energy of the micropipe,
i.e., to a loss in the total energy of the system. The bal�
ance between the gain and loss of the total energy
determines the critical size of the micropipe which
cannot be exceeded. In the initial state (before the for�
mation of a micropipe), the total energy of the dislo�
cation dipole can be estimated as W1 =
Gb2/(2π)[ln(d/rc) + 2Z], where G is the shear modulus,
b is the absolute value of the Burgers vector of the dis�

location, d is the arm of the dislocation dipole, rc is the
cutoff radius of the elastic field of the dislocation at the
dislocation core, and Z ~ 1 is the dimensionless
parameter characterizing the energy of the dislocation
core. After the formation of a micropipe and the anni�
hilation of a dipole, the energy of the system (per unit
length of the disappeared dislocations) can be esti�
mated as W2 = γL, where L is the average perimeter of
the cross section of the micropipe. The formation of
such micropipe is energetically favorable for the
change in the energy of the system ΔW = W2 – W1 =
γL – Gb2/(2π)[ln(d/rc) + 2Z] < 0, from which we
immediately obtain the estimate for the critical perim�
eter Lc such that L < Lc = Gb2/(2πγ)[ln(d/rc) + 2Z]. 

The dependence of the energy change ΔW on the
arm of the dislocation dipole d is shown in Fig. 5 for
the following parameters of 4H�SiC: c = 1 nm, G =
165 GPa, and γ = 0.2 J/m2 [3]. The curves were plotted

Dislocation source

–b

b

–b b

(a)

b = 0

b

–b

b

b b

b

(b)

2b

b b

Fig. 4. Schematic diagram of the formation of an oblate
micropipe on (a) dislocation dipole and (b) pair of disloca�
tions of the same sign. Thick black arrows indicate the
direction of the growth of the micropipe along the disloca�
tion lines due to the absorption and surface diffusion of
vacancies. 
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for three values of the Burgers vector b = nc for n = 1,
2, or 3 with the cutoff parameter rc = b. In the calcula�
tions, the cross�sectional perimeter L of the micropipe
was assumed to be proportional to the dipole arm d,
i.e., L = ηd for η = 2.5 (the lowest value of η ~ 2 cor�
responds to a flat slit, while the highest value of η = π
corresponds to a circle). As can be seen from Fig. 5,
the maximum gain in the energy is achieved for d ~
0.07, 0.21, and 0.47 μm for n = 1, 2, and 3, respec�
tively. At the same time, the formation of a micropipe
remains energetically favorable for significantly higher
values of the dipole arm d < dc = Lc/2.5 ~ 0.40, 1.82,
and 4.40 μm for n = 1, 2, and 3, respectively. These
cross�sectional sizes of oblate micropipes are often
observed in the experiment. 

In the case of the formation of an oblate micropipe
around a pair of dislocations of the same sign, we have
W1 = Gb2/(2π)[ln{R2/(drc)} + 2Z] and W2 ≈ γL +
2Gb2/πln(2R/d), which gives the energy change ΔW =
W2 – W1 = γL + Gb2/(2π)[ln(16R2rc/d3) – 2Z]. Here,
R is the cutoff parameter of the long�range elastic field
of a paired dislocation, which can be taken as half of
the distance between the dislocations of opposite signs
in the sample. In the numerical calculations, we used
R = 10 μm, which corresponds to the dislocation den�
sity of ~106 cm–2, which is characteristic of the bound�
aries of inclusions of other polytypes. The dependence
of the energy change ΔW on the distance between the
dislocations d is shown in Fig. 6 for the same parame�
ters as for the curves in Fig. 5. The curves shown in
Fig. 6 are plotted for three values of the Burgers vector
b = nc for n = 1, 3, and 5. As can be seen from Fig. 6,
the formation of an oblate micropipe around the pair
of dislocations with the Burgers vectors equal 1c and 3c
is energetically unfavorable. In order for such

micropipe to be formed, it is necessary that the abso�
lute value of the Burgers vector would be no less than
5c. For b = 5c, the micropipe size can vary from
approximately 1.5 to 8.2 μm, and the maximum gain
in the energy corresponds to d ≈ 4 μm. Therefore, in
contrast to the previous case of a dislocation dipole,
when the formation of an oblate micropipe is energet�
ically favorable for any value of the Burgers vector and
d < dc, here, we have two critical conditions for the for�
mation of an oblate micropipe: b ≥ bc = 5c and dc1 < d <
dc2. The range of permissible values d is determined by
the Burgers vector: the higher is the absolute value of
the Burgers vector, the wider is the range permissible
distances d. 

Thus, the formation of oblate micropipes can be
explained by the fact that they cover several disloca�
tions (a bundle of dislocations), thus minimizing their
own surfaces. In this case, the largest cross�sectional
size of the micropipe approximately corresponds to
the distance between the farthest dislocations in the
bundle. If the bundle of dislocations is a self�screened
ensemble of dislocations, from a dipole to an arbitrary
multipole, then the driving force of the coverage of the
whole bundle by a micropipe is the possibility of the
annihilation of the bundle inside the micropipe, with
the main limitation that the bundle size cannot exceed
a critical size dc. If the dislocation bundle consists of
dislocations of the same sign (or of different signs, but
the number of dislocations of the same sign differs
from the number of dislocations of the opposite sign),
then the driving force of the coverage of the bundle by
a micropipe is the decrease in the density of elastic
energy near the bundle, with the following main limi�
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Fig. 5. Dependences of the energy change ΔW on the arm
of the dislocation dipole d at b = nc (n = 1, 2, and 3) for the
parameters c = 1 nm, G = 165 GPa, γ = 0.2 J m–2, and η =
2.5. The inset shows the scheme of the annihilation of the
dipole upon the formation of an oblate micropipe around it. 
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Fig. 6. Dependences of the energy change ΔW on the dis�
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the parameters c = 1 nm, G = 165 GPa, γ = 0.2 J m–2, and
η = 2.5. The inset shows the scheme of the association of
dislocations upon the formation of an oblate micropipe
around them. 
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tations: (i) the Burgers vectors of the (uncompensated)
dislocations exceed the critical value bc, and (ii) the
bundle size (the distance between the uncompensated
dislocations) lies in the range between the two critical
values dc1 and dc2, which is determined by the Burgers
vector b. Numerical estimates of the critical values dc,
dc1, and dc2 are in good agreement with the sizes of
oblate micropipes observed in our experiment. 

5. CONCLUSIONS 

The X�ray phase�contrast microscopy technique
used in this work made it possible to observe the shape
of micropipes over the entire path of their propagation
in the bulk of the crystal. The sizes and cross sections
of micropipes were determined using the computer
simulation of their phase�contrast images. By simulat�
ing phase�contrast images of a large number of
micropipes in 4H� and 6H�SiC crystals, we revealed
new morphological features that were not explained in
the framework of well�known models: the instability of
the diameter and cylindrical shape of the micropipes,
local curvatures, etc. Reasoning from the fact that
these features are caused by nonequilibrium processes,
we proposed an alternative mechanism for the forma�
tion of micropipes in a growing SiC crystal. The lead�
ing role in this mechanism belongs to the coagulation
of vacancies around dislocations that are located along
the c axis and reach the front of the crystal growth.
Numerical estimates of the critical parameters respon�
sible for the formation of oval cavities around bundles
of dislocations are in good agreement with the experi�
mental data. 

We investigated inclusions of other polytypes as a
source of dislocation nucleation. However, these pro�
cesses will occur near dislocation pileups caused by
other sources. The formation of nonequilibrium
micropipes can be avoided by decreasing the inhomo�
geneity in the distribution of dislocations, as well as by
decreasing their density. 

The previously unknown morphological features of
the micropipes were revealed only owing to the quan�
titative approach to the processing of phase�contrast
images. This approach opens up new possibilities for
studying other structurally heterogeneous materials,
for example, AlN and GaN. 
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