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This paper reports computer simulations of the transmitted-beam intensity

distribution for the case of six-beam (000, 220, 242, 044, �224, �202) diffraction

of X-rays in a perfect silicon crystal of thickness 1 mm. Both the plane-wave

angular dependence and the six-beam section topographs, which are usually

obtained in experiments with a restricted beam (two-dimensional slit), are

calculated. The angular dependence is calculated in accordance with Ewald’s

theory. The section topographs are calculated from the angular dependence by

means of the fast Fourier transformation procedure. This approach allows one to

consider, for the first time, the transformation of the topograph’s structure due

to the two-dimensional slit sizes and the distance between the slit and the

detector. The results are in good agreement with the results of other works and

with the experimental data. This method of calculation does not require a

supercomputer and it was performed on a standard laptop. A detailed

explanation of the main features of the diffraction patterns at different

distances between the slit and the detector is presented.

1. Introduction

The phenomenon of six-beam (000, 220, 242, 044,�224,�202)

X-ray diffraction in perfect crystals of silicon and germanium

in transmission experiments became interesting for physicists

after the publication of the work by Joko & Fukuhara (1967).

They presented the analytical formulae for all eigenvectors of

the plane-wave scattering matrix at the central point on the

two-dimensional area of angular deviations in which all Bragg

conditions are met accurately. These eigenvectors were used

by the authors to show that the absorption coefficient

for a part of the radiation is very small compared to the two-

beam case.

A detailed study of this question was given by Afanas’ev &

Kohn (1977a). They carefully calculated the dipole and

quadrupole contributions to the photoelectric absorption

under the conditions of the two-dimensional standing wave

arising due to the six-beam diffraction. Later on Kohn

(1987a,b) showed a way to take into account the contribution

of the Compton scattering to the wave attenuation for the

eigenvectors with a low absorption coefficient.

It was shown from the calculation of the intensity angular

dependence for the transmitted plane wave (Kon, 1976a,b)

that the maximum intensity does not correspond to the central

point, where the parameters of deviation from the Bragg

conditions equal zero, but is shifted to the left. At the same

time, the minimum absorption coefficient corresponds to the

central point. This effect of asymmetry is absent in the two-

beam case. Such asymmetry was shown to be associated with

the presence of a large number of eigenvectors with close

values of the dispersion corrections.
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Since it is very difficult to make a plane wave in a laboratory

experiment, Huang et al. (1973) have proposed a simple

transmission scheme for experimental study of six-beam

diffraction. In this scheme the radiation from the source of size

100� 100 mm was incident on the crystal, located at a distance

of 6 cm, whereas a photographic plate was located at a rela-

tively large distance (2 m) from the crystal.

The angular divergence of the incident beam was large,

which allows one to fix on a photographic plate the inter-

secting stripes of two-beam anomalous transmission sepa-

rately for K�1, K�2 and K� lines in the spectrum of the

characteristic radiation of a copper anode with the photon

energy of E ¼ 8 keV. However, they failed to observe an

enhancement of the brightness at the point of intersection.

Later, this scheme was modified by Kshevetskii &

Mikhailyuk (1976a,b). They increased the distance between

the source and the crystal (more than 2 m) and put a photo-

graphic plate directly behind the crystal. However, the main

difference was the use of a microfocus X-ray tube with the

source linear dimensions of a few microns. The authors found

an increased intensity in the area of two-beam stripe inter-

section, but this effect was apparent only for the intermediate

thickness of the crystal and it disappeared for thicker crystals.

In the work by Kohn & Toneyan (1986) the theory of the

multi-beam diffraction of X-ray spherical waves was

presented. It was shown by means of approximate computer

calculations that the intensity distribution on the photographic

plate in the experimental scheme described above strongly

depends on the distance. It was also shown that the observed

intensity increase is not associated with absorption, but with

the effect of diffraction focusing of the spherical wave

(Afanas’ev & Kon, 1977b,c; Kon, 1977a,b).

It should be noted that synchrotron radiation for the

experiment of such a scheme was used by Chang (1982a,b).

The source was located at a distance of 32 m from the crystal

and the photographic plate was located at a distance of 20 cm.

For E ¼ 8 keV and a silicon crystal of thickness 3 mm the

author observed an image of the output window of synchro-

tron radiation without the two-beam stripes.

In the papers of Huang et al. (1973) and Chang (1982b) the

results of calculations of the intensity angular dependence for

the transmitted plane wave were presented. However they

cannot be valid though because the distribution was

symmetric in two directions. This property does not corre-

spond to reality. The presence of asymmetry in the intensity of

the transmitted wave follows from the experiments of Umeno

(1970, 1972, 1976a,b).

A new approach in the study of six-beam diffraction in a

transmission case was used in the work of Okitsu (2003) and

Okitsu et al. (2003). The authors rejected a calculation of the

angular dependence of the plane-wave amplitudes and solved

the system of differential equations directly. This system is a

generalization of the known two-beam Takagi equations

(Takagi, 1962) in the six-beam case. In this approach, one

begins with a point source on the entrance surface of the

crystal and ends on the output surface, i.e. the solution is

carried out only in the volume of the crystal.

In the case of two-beam diffraction, this method is usually

used to study defects in the crystal. In reality, a point source is

formed by a narrow slit in front of the crystal. If the thickness

of the crystal is much larger than the size of the slit, then

distortion of the central part of the diffraction pattern due to

the slit is relatively small. This method is called section

topography, because it refers to the intensity distribution of

transmitted and reflected beams in real space rather than in

angular space and in a restricted domain.

In the works of Heyroth et al. (1999) and Kohn & Smirnova

(2015) the effect of multi-beam diffraction on the two-beam

section topographs of the reflected beam, which consists of

stripes of equal intensity along the slit, was investigated. In

this case, the incident beam represents a mixture of waves

from different sources in different directions. In the direction

across the slit the effective source is the slit itself mounted in

front of the crystal. In the direction along the slit one deals

with the real source located relatively far from the crystal.

To obtain the section topographs of six-beam diffraction the

slit should be rectangular to limit the beam in two dimensions.

To reduce the effect of a large two-dimensional slit (1� 1 mm)

on the result of the experiment in the works of Okitsu (2003)

and Okitsu et al. (2003) the authors had to use hard radiation

of 18.5 keV and a thick crystal (thickness of 9.9 mm). More-

over, they examined the case with doubled Miller indices, i.e.

(000, 440, 484, 088, �448, �404), to maximize the size of the

image compared to the size of the slit.

As a result, they obtained a very good agreement between

the experimental and computed six-beam section topographs,

even without taking into consideration the size of the slit in

the calculations. In subsequent works by Okitsu et al. (2006,

2011), the authors used a slit with a smaller size, 100� 100 mm,

and considered a sample shape different from a plate, which is

commonly used in the study of the diffraction of plane waves.

In this paper we present the results of computer simulations

of X-ray six-beam section topographs for the transmitted

beam with high accuracy, i.e. taking into account the inter-

ference between various eigenvectors of the diffraction

problem. The calculation is performed by means of the fast

Fourier transformation (FFT) procedure applied on two-

dimensional functions of angular dependence of the wavefield

amplitudes for different polarizations. This approach allows us

to investigate the impact of the slit size and distances along the

beam on the structure of a section topograph.

2. Formulation of the problem

Let us consider a silicon crystal having a platelet shape with a

surface normal to the direction 1�11 of the cubic crystal

lattice. Let n0 be a unit vector along this direction. There are

six points in the reciprocal lattice with the Miller indices (000,

220, 242, 044, �224, �202) at the plane normal to n0, which

form a regular hexagon (Fig. 1). Let the wavevector of the

incident plane wave k0 form the angle �0 with the vector n0,

and sin �0 ¼ 81=2�=a, where � is the wavelength of radiation, a

is the silicon crystal lattice parameter. If the end of the k0
vector coincides with the origin of the reciprocal lattice (000),
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then for all the above-mentioned reciprocal-lattice vectors hm,

m ¼ 0; . . . ; 5, the Bragg condition jkmj2 ¼ jk0j2 is met, where

km ¼ k0 þ hm.

We choose the k0 direction as the Z axis of the Cartesian

coordinate system. We assume that the source of X-ray

synchrotron radiation is located on this axis, the distance

between the source and the crystal is large, and the source

angular divergence is small. We assume as well that a two-

dimensional slit of rectangular shape is mounted in front of

the crystal. Then for a wave incident on the slit we can use a

paraxial approximation and represent it by the parabolic

wave.

In front of the slit the electric field vector of the radiation

can be written in the form

E0ðx; y; 0Þ ¼ Ce0i expðiKz0ÞP2ðx; y; z0Þ: ð1Þ
Here C is the normalization factor, which does not influence

the relative intensity, e0i is the unit vector of polarization,

K ¼ 2�=� is the wavenumber, z0 is the distance between the

source and the slit, P2ðx; y; zÞ is the two-dimensional Fresnel

propagator, namely,

P2ðx; y; zÞ ¼ Pðx; zÞPðy; zÞ; ð2Þ
where

Pðx; zÞ ¼ ði�zÞ�1=2 expði�x2=�zÞ: ð3Þ
The characteristic radiation of X-ray tubes is not polarized.

Therefore, in this case the final results should be averaged

over the polarization states. As for synchrotron radiation, it is

polarized inside the plane of electron orbit, i.e. a horizontal

plane.

The two-dimensional slit in front of the crystal has two

functions. Firstly, it limits the size of the beam which is

important to highlight a section of a crystal without defects or

with a given defect. Secondly, it forms the angular divergence

of the radiation, if the size of the slit is less than the transverse

coherence length of the radiation.

It is important to understand that the conditions in a

laboratory experiment and in experiments on the synchrotron-

radiation source are significantly different. The transverse

coherence length Ltc ¼ �=2�, where � ¼ ws=z0 is the angular

size of the source at the distance from the source to the slit

(Kohn et al., 2000, 2001). In the first case, the angular size of

the source typically is very large, and the transverse coherence

length is much smaller than the slit size. The slit plays the role

of a secondary incoherent source with a large radiation

divergence.

For third-generation synchrotron-radiation sources, where

� ¼ 1 mrad and � ¼ 0:15 nm, we have Ltc ¼ 75 mm. Now the

slit has a size generally comparable to or less than Ltc.

Accordingly, the incident wave is modified specifically due to

diffraction at the slit. On the other hand, the diameter of the

first Fresnel zone of the propagator Pðx; zÞ at � ¼ 0:15 nm and

z0 ¼ 50 m is equal to D ¼ 2ð�z0Þ1=2 ¼ 170 mm. Thus, in the

region of the slit the incident radiation can be considered as a

plane wave.

As a result, if the wave amplitude is normalized by the value

in front of the slit, then for the vector E0 just after the slit we

have

E0ðx; y; 1Þ ¼ e0i expðiKz0ÞTðx; yÞ; ð4Þ
where

Tðx; yÞ ¼ �ðx0 � jxjÞ �ðy0 � jyjÞ: ð5Þ
Here �ðxÞ is the Heaviside function which is equal to unity for

x> 0 and to zero for x< 0, and the values x0, y0 are equal to

half sizes of the slit along the axes x and y correspondingly. Let

the distance between the slit and the crystal be z1. The

wavefunction of radiation in front of the crystal is calculated

by means of the Kirchhoff formula and is equal to a convo-

lution of the function (4) with the Fresnel propagator (2) for

the distance z1. Below, for the sake of simplicity, we omit the

phase factor expðiKz0Þ, connected with the motion along the z

axis, because it does not influence the registered relative

intensity.

As a result, we obtain for the vector E0 in front of the

crystal

E0ðx; y; 2Þ ¼ e0i 2iðx; yÞ; ð6Þ
where

 2iðx; yÞ ¼ P2ðx � x1; y � y1; z1Þ � Tðx1; y1Þ: ð7Þ
Here and below, the symbol � means integrating over the

twice-repeated variables in function arguments. Diffraction of

the X-ray wave in the crystal leads to a transmitted wave

arising and five diffracted waves moving in various directions.

In this paper we are concerned with the transformation of the

transmitted wave, which does not change its direction. It is

convenient for experiments with synchrotron radiation.

Since the perfect crystal structure is homogeneous along the

surface, the result of diffraction can be written as a convolu-

tion of the function (7) with the function called the propagator

of the crystal Pvi
Cðx; y; tÞ, which depends on the crystal thick-

ness t and indices of polarization for the input i and output v

radiation.

As a result, for the vector E0 just behind the crystal we have
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Figure 1
The geometry of six-beam diffraction. The directions of the beams, the
directions of the two-beam stripes for each reflection, and the
polarization vectors for the incident wave are shown.
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E0ðx; y; 3Þ ¼ P
v

e0v 3vðx; yÞ; ð8Þ

where

 3vðx; yÞ ¼ Pvi
Cðx � x1; y � y1; tÞ �  2iðx1; y1Þ: ð9Þ

It should be noted that the crystal forms an angle �0 with the Z

axis; therefore the wavefunctions (7) and (9) are not defined at

input and output surfaces of the crystal. They are defined in

the planes normal to the Z axis (Fig. 2). However, one can use

the crystal propagator for the radiation transfer from the input

surface to the output surface because the additional phase

factor along the z axis does not depend on the coordinates x

and y.

If a detector is located at some distance from the crystal z2,

then the vector of the electric field at the detector is deter-

mined by the convolution of the Fresnel propagator with the

field of equation (8), namely,

E0ðx; y; 4Þ ¼ P
v

e0v 4vðx; yÞ; ð10Þ

where

 4vðx; yÞ ¼ P2ðx � x1; y � y1; z2Þ �  3vðx; yÞ: ð11Þ

Substituting the formula (7) into (9) and then (9) into (11), we

obtain a convolution of four functions. Now we apply a well

known rule that the multipliers in the convolution can be

interchanged, and that the convolution of two Fresnel

propagators is equal to the Fresnel propagator at the total

distance. As a result, we finally have

 4vðx; yÞ ¼ P2ðx � x2; y � y2; ztÞ
� Pvi

Cðx2 � x1; y2 � y1; tÞ � Tðx1; y1Þ ð12Þ

where zt ¼ z1 þ z2. It follows from this expression that the

wavefunction does not depend on the location of the crystal

inside the path of the beam from the slit to the detector. Only

the total distance zt is important.

For the calculation of the wavefunction  4vðx; yÞ we use the
Fourier transformation in the form

 4vðx; yÞ ¼
Z

dqdp

ð2�Þ2 expðiqx þ ipyÞ

� Pvi
Cf ðq; p; tÞP2f ðq; p; ztÞTf ðq; pÞ: ð13Þ

This integral is calculated by means of the FFT procedure and

the multipliers of the integrand are calculated directly. So we

have

P2f ðq; p; zÞ ¼ exp �i
�z

4�
ðq2 þ p2Þ

� �
; ð14Þ

Tf ðq; pÞ ¼ 4x0y0sinc ðqx0Þsinc ðpy0Þ; ð15Þ
where

sinc ðxÞ ¼ sinðxÞ
x

: ð16Þ

The function Pvi
Cf ðq; p; tÞ describes the angular dependence of

the plane-wave transmission through the crystal under

conditions of multiple (six-beam) diffraction, which is calcu-

lated previously, for example, by Kon (1976a,b). Below we

describe briefly the method of calculation. If the plane

monochromatic wave is incident on the crystal with the

wavevector k00 ¼ k0 þ u, where u is the two-dimensional

vector in the plane (x; y) with coordinates q and p, then it

experiences refraction inside the crystal and the wavevector

becomes equal to k00 þ "n0=2. Diffraction of the plane wave

incident on atomic planes causes the appearance of additional

plane waves with the wavevectors k0m þ "n0=2, where

k0m ¼ k00 þ hm, hm are the vectors of the reciprocal lattice of

the considered multi-beam configuration, which satisfy the

Bragg condition jk0mj2 ¼ jk00j2 at u ¼ 0.

The vector amplitude of the electric field of the plane wave

with the index m has two components in the plane perpendi-

cular to km. We enumerate these components by the index

v ¼ p; s. Accordingly, for each plane wave we have the three

unit vectors sm, emp and ems. For m ¼ 0 the three vectors are

shown in Fig. 1. It is possible to choose the unit vectors of the

polarization arbitrarily, but it is convenient to use symmetry

properties of the multi-beam pyramid, as was first proposed by

Joko & Fukuhara (1967). In this case, all the vectors ems lie in

the plane of reciprocal-lattice vectors, and emp ¼ ðems � smÞ.
We denote the scalar components of the electric field vector

by ��1=2
m Emv, where the multiplier �m ¼ ðkmn0Þ is introduced

for convenience. Maxwell’s equation for the total electric field

in the crystal is divided into a system of equations for each

component Emv.

This system can be rewritten in the form of the eigenvalue

problem: P
nv0

Gvv0
mnEnv0 ¼ "Emv ð17Þ

for the scattering matrix G, which has the following form in

the dipole approximation:

Gvv0
mn ¼ �K�m

�m

�mn�vv0 þ
K	m�n

ð�m�nÞ1=2
ðemvenv0 Þ ð18Þ

where the parameter �m ¼ ðjk0mj2 � jk00j2Þ=K2 depends on the

angles � ¼ q=K and ’ ¼ p=K, and the diffraction parameters
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	m are the complex values which describe the amplitudes of

kinematical scattering by unit volume of the crystal. In this

work they are calculated by means of the program described

by Kohn (2006a,b).

The matrix G describes both the elastic scattering (the real

part of the matrix G0) and the absorption (the imaginary part

of the matrix G00). In our case the matrix elements of G00 are
much less than the matrix elements of G0. This allows us to
take them into account by means of perturbation theory.

Now the eigenvalue problem of equation (17) is solved only

for the real matrix G0, which speeds up the calculations. As a

result, we obtain 2N eigenvectors, where N ¼ 6 is the number

of beams in the multi-beam configuration. The absorption

coefficients are calculated later by means of the formula


j ¼ "00j ¼ P
mv;nv0

EðjÞ
mvðG00Þvv0

mnE
ðjÞ
nv0 ð19Þ

where an index j enumerates the eigenvalues.

We note that for the real part of the matrix G0 it is sufficient
to consider only the dipole part of the scattering matrix, since

the Thomson scattering on the electron density of atoms gives

the main contribution, which is a pure dipole process.

However, the imaginary part G00 is determined only by the

processes of photoelectric absorption and Compton scattering.

Therefore, under conditions of a sharp weakening of the

dipole part of the photoelectric absorption the quadrupolar

part can play a role, as well as Compton scattering, which

under normal conditions are small and can be neglected. For

this reason, the formula (18) inaccurately describes the

imaginary part of the scattering matrix G00. As shown by

Afanas’ev & Kohn (1977) and Kohn (1987a,b), to calculate the

absorption coefficients one needs to use the matrix in the

following form:

ðG00Þvv0
mn ¼ K	00m�n

ð�m�nÞ1=2
ð1� QÞðemvenv0 Þ
�

þQ½ðemvenv0 ÞðsmsnÞ þ ðemvsnÞðenv0smÞ�
�

þ CCSK	0m�n

ð�m�nÞ1=2
ðemvenv0 Þ ð20Þ

where 	00m�n has to be calculated from the experimental value

of the photoelectric absorption coefficient, Q = �Q=ð�D þ �QÞ,
�D;Q are cross sections of the dipole and quadrupolar contri-

butions to the photoelectric absorption, CCS ¼ 4�r0=3�,
r0 ¼ e2=mc2 is the classic electron radius. The values of Q were

calculated in the work of Hildebrandt et al. (1975).

Each eigenvector comes in the full field with the weight

�jð’Þ, which is determined from the boundary conditions and

depends on the state of polarization of the incident wave. The

boundary conditions are applied to the input surface of the

crystal. If the incident wave is polarized and the polarization

vector e0i makes an angle ’ with the vector e0p then they look

like

P
j

�jð’ÞEðjÞ
mv ¼ �1=20 �m0Cvð’Þ: ð21Þ

Here we assume that the incident wave amplitude is equal to

unity, Cp ¼ cos ’, Cs ¼ sin ’.
Taking into account the orthonormality of the eigenvectors,

the system of equation (21) is easily solved, and results in

�jð’Þ ¼ �1=20 ½EðjÞ
0pCp þ E

ðjÞ
0s Cs�: ð22Þ

Finally, the transmission amplitude of the polarized plane

wave through the crystal is equal to

Pvi
Cf ðq; p; tÞ ¼ ��1=2

0

P
j

�jð’ÞEðjÞ
0v expði"jt=2Þ: ð23Þ

In this work we consider two polarization states of the incident

wave for which ’ ¼ 0 and �=2, i.e. the vector e0i is equal to

either e0p or e0s.

3. Results and discussion

In this paper we present the results of computer simulations

for the angular dependence of the transmitted-beam intensity

as well as for the section topographs in the case of crystal

thickness t ¼ 1 mm and for the photon energy of E ¼ 8 keV,

which is close to the Cu K� line in the spectrum of the X-ray

tube. We consider the symmetrical case where all the para-

meters �m ¼ cos �0 ¼ 0:59, and the angle �0 = 53.8� is equal to
the Bragg angle for the 044 reflection (Fig. 2). In this case, a

decrease in intensity due to passage of the plane wave through

a crystal is determined by the factor expð�
0t=�0Þ
¼ 3� 10�11, and therefore the crystal absorbs the radiation

completely.

It is known that in the two-beam case of diffraction the

absorption coefficient for the path directed along the incident

beam 
 ¼ Kð	000 � 	00hÞ=�0 ¼ 0:75 mm�1 for the sigma polar-

ization when the electric field vector is normal to the scat-

tering plane. Accordingly, the decrease in intensity is

determined by the factor expð�
tÞ ¼ 0:47.
We note that the polarization states, considered in this

paper, do not coincide with the sigma polarization for the two-

beam reflection of type 220. Therefore a decrease in intensity

on the two-beam stripes (see Fig. 3) is greater than the value

estimated above, and for p polarization the two-beam 220

stripes are more clearly visible, because the vector e0p has a

direction which makes a smaller angle with the direction of

sigma polarization for the 220 two-beam case.

Thus, under these parameters the effect of enhancement of

anomalous transmission in the case of multi-beam diffraction

can be seen, though not in a pronounced form. On the other

hand, such thickness of the crystal allows us to study the

interference between the various eigenvectors, having a rela-

tively small absorption coefficient under conditions of multi-

beam diffraction. As it is known, such interference is absent in

the two-beam case.

Since the full amplitude of the radiation field oscillates with

small periods on the map of the angular dependence as a result

of the interference, the calculation has to be carried out with

high resolution. In this work the calculation was performed on

a grid with the number of points n1 ¼ 4096 for the angle � and
n2 ¼ 2048 for the angle ’ with a constant step � ¼ 0:04 mrad.
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The angles � and ’ are measured in the directions of the

polarization vectors e0p and e0s, respectively. The computed

angular area size is 163.84 � 81.92 mrad.
Fig. 3 shows the central part of the calculated angular area

with a size of 81.92 � 40.96 mrad, which contains the entire

multi-beam region. In the rest of the computational domain

there are only two-beam tails, strongly deformed by multi-

beam scattering, as described in the work of Kohn & Smirnova

(2015). In order to better represent the intensity variation on

different scales, the image shows a logarithm of the intensity

normalized to the value of the incident wave. Both axes �
(horizontally) and ’ (vertically) have the same units which are

shown above the picture. The two-beam stripes are normal to

the reciprocal-lattice vectors shown in Fig. 1 by blue lines.

The intensity was calculated as a sum of the square modules

of the function (23) for the two values of the index v. As it

follows from the calculations, the effect of anomalous trans-

mission enhancement depends on the polarization of the

incident radiation, and for the p polarization it is more

pronounced than for the s polarization. This takes place for

both the two-beam 220 stripes and the six-beam region of

angles. The lack of the two-beam stripe for the 044 reflex for p

polarization is related to the fact that this polarization accu-

rately meets the pi polarization, as is determined in the two-

beam case, and for this polarization the decrease in the

absorption coefficient is small, namely 
 ¼
Kð	000 þ 	00h cos 2�BÞ=�0 ¼ 17:8 mm�1.

On the other hand, for s polarization 
 ¼
Kð	000 � 	00hÞ=�0 ¼ 2:9 mm�1. Therefore, on the s map this

stripe is visible, although in a very attenuated form. Additional

weakening is due to the fact that only 1/4 part of the intensity

of the incident beam abnormally passes through the crystal. It

is easy to verify, by taking the sum of p and s maps, that our

result is in general qualitatively consistent with the result

presented by Kon (1976a,b) although it is performed for the

other set of parameters.

Calculation of the section topographs was performed as a

sum of the square moduli of the function (13) for the two

values of the index v. The two-dimensional slit sizes 2x0 and

2y0 were taken such that the graph of the function Tf ðq; pÞ has
the first zero value at the boundaries of the computational

domain. Outside the computational domain, this function has

small values and oscillates, and, therefore, two-beam tails do

not contribute to the topograph. Since the computational

domain has different dimensions in the x and y axes, the two-

dimensional slit sizes were different too, namely 2x0 =

1.892 mm and 2y0 ¼ 3:784 mm. In a real experiment, the sizes

of the two-dimensional slit can be much larger. Then the two-

beam tails are cut off at a smaller distance from the centre of

the multi-beam region. But these dimensions can be imple-

mented.

The calculation was performed using the FFT method. In

this method the number of points of the computational grid

in direct space remains unchanged, but the steps of the grid

are determined by the formulas �x ¼ 2�=ðn1K�Þ and �y

¼ �xn1=n2. Therefore, the step on the x axis was two times less

than the step along the y axis. To make the picture with the

same steps, each pair of columns was replaced by one column

with a value equal to a half sum of the values in the pair. The

resulting picture is square with the number of points 2048 �
2048 and the step �y ¼ 1:892 mm. This value is equal to the

horizontal size of the slit and is just two times less than the

vertical size. So the picture resolution is commensurate with

the size of the slit, and the slit is not visible on the topograph.

The linear size of the computational domain is equal to

3.874 mm for both axes. Fig. 4 shows the simulation results for

the distance zt ¼ 1 cm. The horizontal axis in the figure

corresponds to the x coordinate shown in Fig. 2. Both axes

have the same units which are shown above the picture. The

picture shows the part of the computational domain

containing an image of the crystal. The two-beam stripes are

clearly visible. They correspond to the blue lines in Fig. 1.

The stripes for the reflections of type 220 are thicker

due to multiple scattering in other reflexes. The stripe

corresponding to the 044 reflection is absent on the picture for

p polarization.

Six-beam diffraction interference fringes have the shape of

ellipses with greater intensity in the areas between the centre

of the topograph and the two-beam stripes for the reflections

of type 242. On these stripes the intensity maximum is in the

middle of them, which can be easily explained by the fact that

in the case of two-beam diffraction the energy flow of the

slightly absorbed part of the radiation is confined between the

directions of incident and diffracted waves.
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Figure 3
The angular dependence of the logarithm of the transmitted-beam
intensity for two polarization states of the incident wave, p (top) and s
(bottom). Both axes � (horizontally) and ’ (vertically) have the same
units which are shown above the picture.
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On the other hand, two-beam stripes of the 220 type

interact so strongly that the area between them also remains

bright and looks like an arc, which was first observed by

Umeno (1970). This area corresponds to the bright area in the

left part of Fig. 3. The method of the stationary phase (Kohn &

Toneyan, 1986) allows one to determine the direction of the

rays corresponding to the points of the angular dependence of

the plane-wave diffraction. Using this method it is possible to

show that this is just so, and this is due to the structure of the

dispersion surface, which can be built from the function

"0ð�; ’Þ.
The interference fringes contain fragments which look the

same for both polarizations, but there are also fragments

which are different. It is of interest that the pure multi-beam

picture at the centre of the hexagon is about the same intensity

regardless of the polarization. This means that in the case of

multiple diffraction the polarizations strongly interact and

mix.

In the centre of the picture the intensity level is approxi-

mately equal to expð�12Þ ¼ 6� 10�6. Such a strong decrease

in the intensity can be explained by the fact that the size of the

computational domain is approximately 1:6� 107 mm2, which

is about 2� 106 times greater than the area size of the two-

dimensional slit, and the size of the image area of the crystal is

only a few times smaller. Therefore, the intensity inside the slit

is scattered by the crystal inside a huge area. Losses to

absorption are also possible, but this leads to the fact that not

all of the crystal image areas are illuminated equally. A

discussion of the mechanisms of interference fringe formation

is beyond the scope of this work.

Fig. 5 shows the section topographs for two polarizations of

the incident beam and for the distance of 5 m between the

two-dimensional slit and the detector. The axes are the same

as in Fig. 4. It should be noted that to obtain this result by the

method of direct solution of multi-beam Takagi equations,

which was used by Okitsu (2003) and Okitsu et al. (2003), is

practically impossible, even using a supercomputer. In this

paper the result was obtained on a standard laptop computer.

As can be seen from the figure, the distance primarily

deforms the two-beam stripes. The two-beam 220 stripes are

especially strongly deformed, and these deformations are

different in different directions. The central part of the two-

beam stripes increases its width inside the polygon, while the

thickness of the bridge between the stripes does not change.

On the other side of the central part a fragment of the two-

beam stripe grows outside of the polygon which corresponds

to the angles of pure two-beam diffraction.

Comparing Figs. 3 and 5 it is easy to understand that the

right part of the two-beam stripe in Fig. 5 corresponds to the

angular region on the right in Fig. 3 and vice versa. A rough

estimate of the size of the two-beam stripe region can be

obtained using the geometrical optics approach. Let us neglect

the curvature of the dispersion surface. In this approximation

we have a simple correspondence between the coordinate � in
the topograph, counted from the centre of the two-beam stripe

along its direction, and the angle ’ in the map of angular

dependence (Fig. 3), namely � ¼ z’, where ’ is counted

similarly to �.
Since the angle between the two-beam stripe and the X axis

is small in our case, we can approximately replace � by x and ’
by �. The maximum value of the angle � in Fig. 3 is

�m ¼ 80 mrad. Therefore xm ¼ 0:4 mm at a distance of 5 m.

This estimate corresponds to the length of the fragment

outside of the polygon. The other part of the stripe, which is
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Figure 4
The section topograph of the six-beam diffraction for the distance of 1 cm
between the slit and the detector. A logarithm of the transmitted-beam
intensity is shown for two polarization states of the incident wave, p (left)
and s (right). The horizontal axis corresponds to the x coordinate shown
in Fig. 2. Both axes have the same units which are shown above the
picture.

Figure 5
The section topograph of the six-beam diffraction for the distance of 5 m
between the slit and the detector. A logarithm of the transmitted-beam
intensity is shown for two polarization states of the incident wave, p (left)
and s (right). The axes and units are the same as in Fig. 4.
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directed inwards, interferes with the six-beam area and looks

like a more complicated distribution.

In experiments with a laboratory X-ray source the angular

divergence of radiation is very large, so long two-wave stripes

are clearly visible even at a distance of 2 m or less. However,

the area between them in the form of an arc remains. This arc

was first observed by Umeno (1970). Using a synchrotron-

radiation source such an experiment is also possible if the two-

dimensional slit is replaced by a compound refractive lens

(Snigirev et al., 1996). However, the section topograph shows a

pure six-beam diffraction area more accurately, so such an

experiment is preferable.

As for the weak two-beam stripes, they are entirely located

within a six-beam area and interfere with it. The resulting

interference leads to the appearance of a band of very weak

intensity. It looks like the stripe is cut off and moved apart.

This effect is not clear and requires further investigation.

The calculation for the distance of 10 m showed that the

above tendencies of the topograph change are enhanced,

namely the arc moves closer to the centre, the six-beam area is

seen partly outside the arc and partially overlaps by strong

two-beam 220 stripes. In general, the picture becomes less

expressive and more complex. Since this distance is at the limit

of experimental possibilities with a small two-dimensional slit

at synchrotron-radiation sources, the corresponding images

are not displayed.
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