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Abstract—The distortion of interference fringes on the section topograms of single crystal due to the multiple
diffraction of X rays has been investigated. The cases of the 220 and 400 reflections in a silicon crystal in the
form of a plate with a surface oriented normally to the [001] direction are considered both theoretically and
experimentally. The same section topogram exhibits five cases of multiple diffraction at small azimuthal
angles for the 400 reflection and MoKα radiation, while the topogram for the 220 reflection demonstrates two
cases of multiple diffraction. All these cases correspond to different combinations of reciprocal lattice vectors.
Exact theoretical calculations of section topograms for the aforementioned cases of multiple diffraction have
been performed for the first time. The section topograms exhibit two different distortion regions. The distor-
tions in the central region of the structure are fairly complex and depend strongly on the azimuthal angle. In
the tails of the multiple diffraction region, there is a shift of two-beam interference fringes, which can be
observed even with a laboratory X-ray source.
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INTRODUCTION

The section topography of silicon single crystals of
high structural quality makes it possible to detect and
successfully identify individual structural defects (e.g.,
dislocations and stacking faults) by analyzing their
influence on the interference pattern of a perfect crys-
tal via far strain fields. The corresponding method was
proposed by Kato and Lang [1]. Its essence is as fol-
lows. A narrow slit of width d is installed before a crys-
tal to limit the incident X-ray beam in one direction.
The beam expands due to the dynamic diffraction in
the crystal. This expansion leads to the illumination of
the so-called Borrmann fan, formed by the vectors of
the incident (s0) and reflected (sh) waves. If crystal
thickness t is sufficiently large, the width of the
reflected beam in the perpendicular direction
becomes equal to D = d + 2tsin θB ≫ d.

The interference of the incident and reflected
waves leads to the occurrence of bright- and dark-con-
trast fringes; note that the distance between the fringes
in the central part of the pattern exceeds the slit size,
which is why the slit does not deteriorate the central
interference fringes even in for X-ray beams with low
spatial coherence. The crystal structure defects may
distort fringes because of the lattice strain. However,
there is another source of fringe distortion even in the
absence of defects. If the source angular size is small
along a fringe, different parts of the topogram in this

direction correspond to different azimuthal angles.
Some angles provide conditions for multiple diffrac-
tion, due to which other reflected beams arise. Fringe
distortion occurs due to the change in the character of
interaction between the X-ray beam and crystal.

The multiple diffraction theory was initially devel-
oped for a plane incident wave and an infinite crystal
plate [2–4]. It studies the angular dependences of the
incident beam reflection. The angular dependences
for a thick crystal in the Laue (transmission) geometry
have a very fine structure, which can be resolved using
only precise collimators [5–7]. In a laboratory experi-
ment, section topography makes it possible to investi-
gate multiple diffraction using simple tools; however,
in this case, it is necessary to calculate the Fourier
transform with respect to the polar angle after calcu-
lating the angular dependence.

The specific features of section topograms in the
case of multiple diffraction were studied in [8] using
synchrotron radiation with a high resolution in the
azimuthal angle, however, no exact theoretical calcu-
lations were performed. Such a calculation was per-
formed in [9] for three cases of multiple diffraction,
revealed for the 400 reflection in a topogram of a sili-
con crystal with a surface oriented perpendicular to
the [001] direction. The calculation results turned out
to be in good agreement with the fringe pattern
obtained using a laboratory source with a low resolu-
tion in the azimuthal angle. This study is a continua-
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tion of [9]. Here, we report the results of analyzing two
more cases of multiple diffraction (revealed in a topo-
gram for the 400 ref lection) and two cases for the
220 reflection.

The advantage of the experimental scheme under
consideration is that all cases of multiple diffraction
are observed on the same topogram without crystal
rotation. The problem of determining additional
reflections from a known value of azimuthal angle
itself is of importance. Below we present the solution
to this problem and a method for calculating topo-
grams.

THEORY AND CALCULATION METHOD
When searching for additional ref lections on a sec-

tion topogram at specified polar angle θ and azimuthal
angle φ in planes oriented perpendicular and parallel
to the topogram plane, it is convenient to use the crys-
tal coordinate system. In this case, normal n0 to the
crystal surface is directed along the [001] axis, which is
assumed to be Z axis. Correspondingly, the X and Y
axes are directed along the [100] and [010] axes of
cubic crystal. Angles θ and φ determine the incident
beam direction (specifically, the coordinates of vari-
able wave vector k0 of incident plane wave (Fig. 1). In
this case, one uses other X and Y axes directed parallel
and perpendicular to the reciprocal lattice vector.

Both coordinate systems coincide on the section
topogram for the 400 reflection, and vector k0 = Ks0,
s0 = (–sin θ, cos θ sin φ, cos θ cos φ), where K = 2π/λ
is the wave number and λ is the X-ray wavelength.
Obviously, angle θ is the Bragg angle for the 400 reflec-
tion (sin θ = 2λ/a, where a is the lattice constant). The

problem to solve is as follows: with the values of angles
θ and φ specified, one must test all reciprocal lattice
vectors with Miller indices (n1, n2, n3) and find those
satisfying the Bragg conditions in the best way. These
conditions can be written as

(1)

where A = λ/a = sin θ/2 and n1, n2, and n3 are integers.
Only even‒even or odd‒odd combinations can be
chosen for a silicon crystal.

It was shown in [9] that a four-wave case (220; 400;
2 0) is implemented at φ = 0, another four-wave case
(400; 5 ; ) occurs at φ = 4.938 mrad, and a symmet-
ric case (400; 53 ; 3 ) corresponds to φ = –4.938 mrad.
In this paper we additionally present a fragment of
experimental topogram and the results of a theoretical
calculation for a four-wave case (400; 6 ; ),
which is implemented at φ = 41.674 mrad. Corre-
spondingly, there is a symmetric case for the negative
value of φ and the vectors with the opposite sign of y
component.

Note that a calculation from formulas (1) for each
azimuthal angle takes much time. However, the calcu-
lation time can be reduced. To this end, it is sufficient
to indicate the reciprocal lattice vectors yielding the
minimum value of parameter α. Then, using two
reciprocal lattice vectors and the specified value of
angle θ (i.e., specified radiation wavelength), one can
determine the coordinates of vector s0, as was
described in [4] and then find (based on these coordi-
nates) the exact value of angle φ, using again formu-
las (1).

On the section topogram for the 220 ref lection,
the X axis in the topogram coordinate system (Fig. 1)
is parallel to the c[110] axis, and the Y axis is parallel to
c[ 10], where c = 2–1/2 = 0.7071. The coordinates
of vector s0 in the crystal coordinate system are
s0 = (–c[sin θ +cos θ sin φ], –c[sin θ – cos θ sin φ],
cos θ cos φ), and sin θ = λ/(ca). Correspondingly,
parameters Sx and Sy in formula (1) should be replaced
with

(2)

A four-wave case (220; 15 ; 1 ) was found to be
implemented at azimuthal angle φ = 1.1600 mrad. At
a negative value of this angle, the symmetric four-wave
case differs from the aforementioned one by the per-
mutation of Miller indices x and y.

Having determined angles θ and φ, one can calcu-
late coordinate y on an experimental topogram at
small azimuthal angles from the formula y = φLcos θ.
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Fig. 1. Geometric scheme of diffraction for section topog-
raphy, which determines angles θ and φ (k0 is the wave
vector of incident wave and k1 is the wave vector of
reflected wave in the two-beam case).
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It was assumed in [9] that cos θ ≈ 1; however, in the
case of section topograms for reflections with large
Miller indices (e.g., the 800 reflection) or at larger
radiation wavelengths, the factor cosθ must be taken
into account.

The theoretical calculation of section topograms
with allowance for multiple diffraction was performed
in two stages. First, we calculated a two-dimensional
map of the angular dependence of four diffracted-
wave amplitudes for different polarizations of both
incident and reflected waves. Then a Fourier trans-
form with respect to the polar angle was carried out
and squares of amplitude moduli were summed.

The angular dependence was calculated according
to the scheme that was described for the first time in
[10] and used in [9]. When an incident plane wave with
a wave vector k0 enters a crystal, it undergoes refrac-
tion, and the wave vector becomes equal to k0 + εn0/2.
Correspondingly, the diffracted waves have wave vec-
tors km + εn0/2, where km = k0 + hm; hm is the mth
reciprocal lattice vector for multiple configuration
under consideration, which satisfies the Bragg condi-
tions .

It is convenient to write the scalar wave amplitudes
in the form γmEms, where γm = (kmn0) and the polariza-
tion index s takes two values, corresponding to the
components of vector Em oriented perpendicular to the
km direction. In this case, the problem of determining
the amplitudes Ems and parameter ε is reduced to the
problem on eigenvalues of complex scattering matrix,
specifically,

. (3)

The explicit form of the matrix was reported in [9, 10].
In the cases under consideration, all reflected plane
waves emerge from the crystal through the same sur-
face as the incident wave; i.e., all parameters γm > 0.

In this case, the elements of the imaginary part of
absorption matrix G are much smaller than the ele-
ments of its real part. This circumstance makes it pos-
sible to solve problem (3) for only the real part and take
into account the imaginary part in terms of perturba-
tion theory. Specifically the diagonal elements of the
real part of matrix G depend on angles θ and φ. Prob-
lem (3) has 2N solutions, where N is the number of
multiple-diffraction waves. We denote these solutions
by index j. According to the perturbation theory, it is
sufficient to find only the imaginary part of eigenval-
ues, which determines absorption coefficients μj.

The total electric field induced in the crystal is a
superposition of all eigensolutions entering the sum
with different weights. These weights are determined
from the boundary conditions. In the case under con-
sideration (γm > 0) they can be found analytically. If
the incident wave has a polarization p, the amplitude
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of the reflected wave with polarization s, denoted by
subscript m, is

, (4)

where t is the crystal thickness.
A calculation for this reflection yields four func-

tions, each of which depends on angles θ and φ. As was
shown in [9], under laboratory conditions, the slit can
be considered an incoherent source, each point of
which emits independently. In this case, one must cal-
culate the Fourier transform with respect to variable
q = Kθ, i.e., pass to the functions

(5)

and then calculate half the sum of the squares of mod-
uli of all four functions.

Transform (5) corresponds to Kato’s spherical
wave theory [11]], which is valid if distance Ls between
the slit and crystal is smaller than 0.1Lf, where Lf is the
diffraction focal length [12]. If this condition is not
satisfied, it is necessary to use the more general theory,
which was developed in [13, 14]. The pattern obtained
from formula (5) corresponds to the ideal experimen-
tal conditions: infinitely narrow slit and infinitely
small source size in angle φ. To perform a comparison
with the results of real experiment, one must average
the pattern over the slit width and angular source size.

EXPERIMENTAL
A schematic of the experiment is shown in Fig. 2.

We used a laboratory source (28 × 30 μm in size) of
unpolarized MoKα radiation. Topograms were
recorded with a Lang camera (A-3 model). The dis-
tances are indicated in the figure. The widths of the
first, second, and third slits are, respectively, 400 μm,
10–15 μm, and about 1 mm; however, the topogram
sizes are smaller than 1 mm and depend on the crystal
thickness.

Figure 3 shows a fragment of section topogram for
the 220 reflection, the central part of which (in the
vertical direction) corresponds to the azimuthal angle
φ = 1.1600 mrad. Using the above-described method,
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Fig. 2. Schematic of the experiment: (S) X-ray source;
(S1‒S3) first, second, and third slits; (C) crystal; and (P)
photographic plate. 
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we found that this angle corresponds to the four-wave
case (220; 15 ; 1 ). In this experiment, the crystal
thickness is t = 670 μm and the Bragg angle is θ =
10.644°. Correspondingly, the topogram width (Borr-
mann fan base) is 248 μm.

Although the experimental scheme has a relatively
low resolution, one can clearly see the central bright
fringes are narrower in the top part of the pattern and
wider in the bottom part. This behavior is a conse-
quence of multiple diffraction.

The fragment of the section topogram for the
400 reflection, corresponding to the azimuthal angle
φ = 41.674 mrad, is shown in Fig. 4. It corresponds to
the four-wave case (400; 6 ; ). In this experi-
ment, crystal thickness t = 1006 μm, Bragg angle θ =
15.142°, and topogram width is 526 μm. Since the
Bragg angle and crystal thickness are larger by a factor
of 1.5 in this case than in the previous situation, it is no
wonder that the topogram contains a larger number of
bright fringes. Despite the grain structure of the image
recorded on a photographic plate, one can see many
fringes with a small period.

It is of interest that in this case the contrast in the
multiple diffraction region has an opposite structure
than Fig. 3. Specifically, when approaching this
region, the spacing between the fringes increases in the
top part and decreases in the bottom part. In [9] we
reported the result for the same reflection but smaller
azimuthal angle: φ = 4.938 mrad, which corresponds
to another system of reciprocal lattice vectors (400;

1 3 1

42 242

5 ; ). The asymmetry is the same as in Fig. 4. Note
that the situation presented in Fig. 4 differs from that
considered in [9] by the increase in all Miller indices of
additional vectors by unity, with the sign preserved.

CALCULATION RESULTS

The angular dependences of functions (θ, φ)
were calculated on a grid containing 2048 × 161 points.
Here, subscript 1 corresponds to the 220 and 400 reflec-
tions of the section topograms under consideration.
Angle θ is changed inside the intervals 152 and 90 μrad
for the 220 and 400 reflections, respectively. The Fou-
rier transform with respect to angle θ was performed
using the standard fast Fourier transform (FFT) pro-
cedure. The figures show a quarter of the calculation
domain.

Figure 5a shows a calculated section topogram for
the 220 reflection computed by the above-described
method. This topogram corresponds to a slit of
infinitely small size and a source with infinitely small
angular size. One can see that the size of the multiple
region on the azimuthal angle axis does not exceed
60 μrad. The intensity distribution in this region is
very complex; its experimental analysis calls for a very
high resolution in azimuthal angle.

The two-beam diffraction fringes exhibit bending
in the region about 200 μrad in size (with the central
part excluded). The Bragg conditions for additional
reflections are poorly satisfied in this region; their role
is reduced to simple renormalization of scattering
parameters. An effect of this type was discussed for the
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Fig. 3. Fragment of experimental section topogram for the
220 reflection (670-μm-thick crystal, MoKα radiation)
corresponding to multiple diffraction at an azimuthal
angle of 1.16 mrad. 
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Fig. 4. Fragment of experimental section topogram for the
400 reflection (1006-μm-thick crystal, MoKα radiation)
corresponding to multiple diffraction at an azimuthal
angle of 41.76 mrad. 
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first time in [15]. Although strong renormalization is
implemented in a wider range of azimuthal angles, it is
nevertheless finite. A very weak renormalization is
observed in a wider angular range. A multiple diffrac-
tion region with a smaller step was presented in [9].

In this paper we present a section topogram (Fig. 5b)
obtained from Fig. 5a after calculating the convolution
with Gaussian functions with half-widths wx and wa
over the x and φ axes, respectively. We used the follow-
ing values: wx = 10 μm and wa = 40 μrad. The wx value
is equal to the width slit. However, with a source size
of 30 μm and a total distance of 370 mm, the angular
source size is 81 μrad. The calculation with this size
yields a more diffuse pattern than that shown in Fig. 3.

Thus, a comparison of the calculated and experi-
mental topograms on the multiple diffraction region
makes it possible to estimate the effective source size
along the topogram. In this case, it turned out to be
smaller than expected by a factor of 2. This method
makes it possible to estimate the effective sizes of not

only laboratory sources, but also synchrotron radia-
tion sources and X-ray free-electron lasers.

It is noteworthy that the multiple diffraction region
on the topogram is more sensitive to the crystal thick-
ness than the two-beam region. Therefore, comparing
the calculation results and experimental data, one can
determine more exactly the local crystal thickness. In
particular, it was found that a thickness value of
670 μm is in better correspondence with the experi-
mental data than a value of 680 μm, which was
expected initially.

Figure 6 shows a theoretical section topogram for
the 400 reflection. The calculation was performed for
the same parameters as in Fig. 4 but in the ideal case
of infinitely narrow slit and infinitely small angular
source width. In the tails of the multiple diffraction
region, this topogram is the same as in Fig. 2 in [9],
although there are differences in the multiple diffrac-
tion region. This result is quite expected, because the
indices of the additional reciprocal lattice vectors in
both cases differ only slightly. The renormalization of
two-wave-diffraction parameters is the same, whereas
the multiple diffraction region is more sensitive to the
indices of additional ref lections.
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