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Abstract―The results of theoretical analysis of the interference pattern created by an X-ray multilens inter-
ferometer in the case of an arbitrary number of planar compound refractive lenses are presented. The full
widths at half maximum of the resonance peaks in the transverse and longitudinal directions relative to the
direction of synchrotron radiation are calculated at distances corresponding to the fractional Talbot effect. A
relation between the widths is shown to exist that is very close to the width relation in the case of focusing by
a single lens. A difference between the fractional and full Talbot effects is discussed, and the necessary con-
ditions for the transverse and longitudinal coherence of radiation are analyzed, the satisfaction of which guar-
antees that undistorted interference peaks will be observed experimentally.
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INTRODUCTION

The fabrication of X-ray focusing optical systems,
i.e., compound refractive lenses, has been under
intensive development since 1996 [1]. They have
advantages for focusing X-ray radiation with a high
photon energy (more than 30 keV) as compared with
other systems. At present, two technologies for fabri-
cating these lenses are most popular. The first one uses
the pressing of material by parabolic punches to create
a circular (2D) aperture [2]. The second one creates
planar lenses for one-dimensional (1D) focusing.
Modern planar compound refractive lenses are the
surface layer of a crystal of specific thickness, which
contains vertical steps confined by a parabolic profile.
In fact, X-ray radiation is focused in the crystal’s sur-
face layer on convex cavities, unlike visible light,
which focuses on the convex material. This is associ-
ated with the fact that a real part of the complex refrac-
tive index n of X-ray radiation is less than unity: n =
1 – δ + iβ. The β parameter is connected with the linear
absorption factor by a simple relationship: μ = 2Kβ,
where K = 2π/λ is the wavenumber, and λ is the wave-
length of monochromatic X-ray radiation.

Typically a silicon crystal is used since the methods
of microstructuring (electron-beam lithography and
deep anisotropic etching) of silicon surfaces are very
well developed [3–5]. These lenses have an extremely
short focal distance (up to 1 cm) and make it possible
to reduce a beam in the focus down to sizes ten times
smaller than a micrometer, therefore they are called
nanofocusing lenses. An important property of these

lenses is also their small aperture (50 μm and less).
Although, generally speaking, this is a drawback, but
for third-generation sources of synchrotron radiation
(e.g., ESRF in Grenoble, France), it is compensated
for by the fact that the size of the beams themselves
also is very small, while the size of the transverse (spa-
tial) coherence is still less and commensurable with
the effective aperture of these lenses.

On the other hand, the small aperture of planar
compound refractive lenses made it possible to take
the next step, namely, to create bilens [6] and mul-
tilens [7] interferometers, in which several planar
compound refractive lenses are created on the same
crystal in the direction perpendicular to that of beam
propagation such that they are parallel to each other,
touching the edges of the apertures. A scheme of the
experiment with this interferometer is shown in Fig. 1.
Although a single lens is shown schematically in the
figure, a “train” of lenses with a large curvature radius
of the parabolic surface is used in practice. If the focal
distance of this lens is more than three times less than
its length, then compound and single lenses with the
same effective radius of curvature work in the same
way [8]. The lenses collect an incident beam into two
or more foci, after which the beams diverge as if the
foci were secondary sources of X-ray radiation. At
some distance along the axis of radiation propagation
(z axis of a Cartesian coordinate system), the beams
from different secondary sources overlap and interfere
if the sum of apertures of the lenses (that create them)
is less than the size of transverse coherence. In this
case, all secondary sources are coherent. We will
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assume that this condition is satisfied, though, in real-
ity, this is not always the case.

This work presents the results of theoretical analy-
sis of the interference pattern created by an X-ray mul-
tilens interferometer in the case of an arbitrary number
of lenses. Main attention is paid to the resonance
structure that appears at distances of zN = d2/λN from
the secondary sources, where d is the distance between
secondary sources in the direction perpendicular to
that of beam propagation (i.e., is equal to the lens
aperture), and N is an integer. It is conventional to call
the emergence of this structure the fractional Talbot
effect, though between it and the Talbot effect (which
consists in the fact that secondary sources reproduce
themselves at distances of nzT, where zT = 2d2/λ and
n is an integer), substantial differences exist, the
demonstration of which is also the aim of this work.
Additionally, the conditions for transverse and longi-
tudinal coherence are discussed, which must be satis-
fied to see the interference pattern experimentally.

GENERAL FORMULAS AND THEIR 
COROLLARIES

Let us consider the most typical case when the
length of the planar compound refractive lenses is
much less than the distance to the focused image of
the source. In this case, numerical calculation of the
optical properties of the X-ray multilens interferome-
ter can be carried out in the context of the conven-
tional theory of X-ray phase contrast [9]. In this the-
ory, an interferometer is described by the transmission
function T(x), depending on the coordinate x in the
direction perpendicular to that of beam propagation
(Fig. 1), namely:

(1)

where t(x) is the varying thickness of the lens material
along the beam parallel to the optical axis and passing
through the point x.

Let the distance between the radiation source and
the interferometer be z0, and the distance between the

( )= − −( ) exp [δ β] ( ) ,T x iK i t x

interferometer and the detector be z1. Then the distri-
bution of the intensity I(x) over the detector can be
calculated by the formulas

(2)

where x0 = x (z0/zt), Z = z0z1/zt, zt = z0 + z1, while the
function P(x, z) is the Fresnel propagator

(3)

As it follows from (2), the interference pattern is the
same for both parallel and divergent beams.

However the position of the pattern in space (z1)
and its transverse sizes (x) depend on the distance z0.
For a parallel beam (z0 = ∞), we have x = x0, z1 = Z.
For a divergent beam:

(4)

Thus, we derive in the divergent beam the same pat-
tern, but with an increased transverse size and at a dis-
tance farther from the interferometer. Formulas (4)
should be taken into account in experimentally study-
ing the optical properties of the multilens interferom-
eter. However for theoretical analysis, it is sufficient to
restrict oneself to the case of the parallel beam when
z0 = ∞.

Let the interferometer be an array of M lenses and
its aperture be limited to a slit. Then the function t(x)
in (1) can be written as

(5)

Here d is the distance between the lens centers equal to
their physical aperture, R = R0/N is the effective cur-
vature radius of the parabolic profile of the lens on the
condition that R0 is the physical curvature radius for a
single element, N is the number of elements, and θ(x)
is the Heaviside function, equal to unity for a positive
argument and to zero for a negative argument. The
coordinates of the lens centers are equal to xk = d(k –
[M + 1]/2). We will consider the symmetric case when
M is an even number.

Formulas (1)–(5) have been used for the develop-
ment of a computer program which allows one to take
into account fine effects related to a limitation of the
aperture of lenses due to absorption in the inhomoge-
neous material. However, general properties can be
obtained without numerical calculations. The system
of interferometer lenses focuses a parallel beam on
points with transverse coordinates xk. These foci can
be considered as secondary sources located at a dis-
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Fig. 1. Scheme of the experiment with the use of an X-ray
multilens interferometer: (1) source of synchrotron radia-
tion; (2) interferometer (a single lens is shown as the equiv-
alent of a “train” of N lenses, the curvature radius of the
parabolic surface of which is N times more); (3) detector (a
fragment of the interference pattern is shown).
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tance of f from the interferometer. Let us consider such
distances z1N = f + zN from the interferometer to the
detector, passing which, the waves will have the same
phase at the optical axis (x = 0) if the phase difference
equal to 2π multiplied by an integer is neglected. It is
obvious that at these distances, the relative intensity of
the radiation will be M 2 times higher than that from a
single lens.

The length of the path from the secondary source
with the number k to the optical axis at the distance z
is equal to

(6)

At the indicated distances z the difference in paths for
different sources is equal to an integer number of
wavelengths. This difference for sources with arbitrary
numbers k and i is

(7)

It is easy to verify that the expression in square brack-
ets is an integer. Indeed, k, i, and M are integers and M
is an even number. If k – i is the odd number, then k + i
is also the odd number. Consequently, the expression
in parentheses is equal to the integer. If k – i is an even
number, then the expression in parentheses is a half-
integer, and by multiplying it by an even number, we
derive an integer again.

Consequently, the resonance condition can be
written as d2/zN = λN, where N is an arbitrary integer
which we will call the order of resonance. From this
condition, we derive the formula for distances zN =
d2/λN, at which resonance arises, i.e., all secondary
sources interfere constructively.

One can also easily calculate the period of the
interference pattern. For this purpose, it is necessary
to repeat all calculations for a point with coordinate x
on the detector, suggesting that z = zN. We will give the
calculation result straightaway:

(8)

It follows from this formula that the period of the
interference structure is p = d/N. In other words, the
pattern at a distance, which is N times less than the
main-resonance distance, has an N-times smaller
period, while the period of the main resonance is
equal to that of location of the sources.

The case of a bilens interferometer is a particular
one. If M = 2, then the expression in square brackets
of Eq. (7) is zero. Consequently, the resonance condi-
tion holds at any distance z. Accordingly, the period is
dependent of the distance and is equal to p = λz/d.
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ANALYTICAL THEORY OF AN IDEAL 
INTERFEROMETER

Let us consider the structure of interference fringes
at the resonance distances zN. Formally, these may be
very short distances for large N values. However, for
the multilens interferometer with a large number of
lenses M and a relatively small aperture of each lens,
the beams from all lenses will not be able to interfere at
small distances, since they will be separated in space.
We will assume that the distances zN are still large
enough that all beams can overlap at least in a small
region near the optical axis.

Let us consider an ideal interferometer, which
focuses an incident plane wave on the secondary point
sources, and let us measure the distance z from these
sources. The wave function under the above described
conditions is equal to the sum of Fresnel propagators:

(9)

The detector measures the radiation intensity I(x, z) as
a square of the modulus of this function. Accordingly,
we derive

(10)

Let us substitute the coordinate values from (9), and to
calculate the double sum, we will regroup the terms,
separating pairs of terms with the same distance
between the sources. Namely, for each value of index k,
we will summarize all indices j = k – m, where m = 1,
2, …, k – 1. As a result, for the function K(x, z) = λzI(x,
z), we derive

(11)

We note that the term in the cosine argument ψkm,
which is independent of x, does not depend on index k.
Again, let us regroup the terms using the substitution
k = (M + m + 1)/2 + l such that a sum over m would
be the first one, and we finally derive the expression

(12)
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In this case, M is an even number, while m is an inte-
ger; consequently, the index l may be both an integer
and a half-integer number.

If M = 2, then we derive only one term with m = 1,
l = 0. With an increase in the number of lenses M, the
number of terms in Eq. (12) grows rapidly. So, for M = 6,
we have 15 terms, divided into five groups with differ-
ent periods. It is important to note that the product ml
is always an integer, even for half-integer values of l. It
is easy to understand that the period of the function
K(x), and, consequently, also the period of the inter-
ference structure is equal to p = λz/d; but higher har-
monics exist with a smaller period. However, at the
resonance distances z = zN = d2/λN, the argument ld2

does not influence the result, since it is equal to 2π
multiplied by an integer. At these distances, we derive
the simpler expression

(13)

It is interesting that the period of the interference
structure is independent of the number of lenses M,
but the height of the maxima depends on it. With x = 0,
we have K(0) = M2. On the other hand,

(14)

Consequently, the peak value is M times higher than
the mean, which is M times higher than the value for a
single lens. It is evident that the mean is equal to the
intensity for the incoherent source.

A more complicated issue is determination of the
peak width in the directions both perpendicular and
parallel to the direction of beam propagation. The
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numerical calculations show that the peak width in the
perpendicular direction is approximately M times less
than the period, and the peak is described roughly by
a Gaussian function. Let us suggest that for large M
values and near the point x = 0, the function K(x) ≈
M2exp(–αx2). The coefficient α can be determined by
comparing the second term of the expansion of the
exponential into power series in x2 with the expansion
of exact expression (13). Then the peak’s full width at
half maximum (FWHM) wt = 1.665α–1/2 can be
derived from the Gaussian function. The first terms of
the expansion are

(15)

Here b = 2πx/p, while exact values of the sums can be
taken from the tables or the Internet [10]. Thus, we
derive

(16)

It is interesting that for M = 2, Eq. (16) yields wt =
0.52p, whereas for large M values, we derive wt =
0.92p/M. In Fig. 2, the exact function K(x) for M = 6
and p = 10 μm is shown with a solid line, while its
approximation by the Gaussian function is shown with
dots. It can be seen that approximation by the Gauss-
ian function works well.

Let us consider the longitudinal shape of the reso-
nance peak. We assume in Eq. (12) that x = 0 and per-
form the substitution z = (d2/λN)(1 + s/N). Only small
values of s for which the approximation 1/z =
(λN/d2)(1 – s/N) can be used will be considered. As a
result, we derive the function

(17)

Now we can apply to this function the same method as
above. So, the first two terms of the expansion into
power series in s2 are

(18)
where

(19)

The coefficient C has a simple physical meaning,
though to calculate the sum directly is rather difficult.
Indeed, the coefficient should be zero for M = 0, 1,

−

=

⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

−= −

∑
1 2 2

1
2

2 2 2

( , ) 2 ( ) 1
2

1 .
12

M

N

m

b mK x z M M m

MM M b

⎛ ⎞ −= = =⎜ ⎟
⎝ ⎠ −

2 2

1 2 1 22
2π 1 1.665 0.9180α , .

12 α ( 1)
t

M w p
p M

− − −

= =− − −

= + ∑ ∑
1 ( 1) 2

1

1 ( 1) 2

( ) 2 cos(2π ).
M M m

m l M m

K s M mls

≈ −2 2
1(0, ) (2π ) ,K s M s C

− − −

= =− − −

=

− −=

∑ ∑
1 ( 1) 2

2 2

1 ( 1) 2

2 2 2( 1)( 4).
720

M M m

m l M m

C m l

M M M

Fig. 2. Function K(x) for M = 6, p = 10 μm (solid curve)
and its approximation by a Gaussian function (dots).

5 10 150

K(x), arb. unit

–5

10

20

30

0

x, μm



702

JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHROTRON AND NEUTRON TECHNIQUES  Vol. 10  No. 4  2016

KOHN

and 2, since for these M values, the resonance struc-
ture is lacking. Exact calculation yields the correct
value of the denominator.

Again, let us approximate the exact function (17) by
the Gaussian function M2exp(–αs2) near the reso-
nance peak and derive the FWHM of function (17) in
the form

(20)

The parameter ws is versatile, but the real FWHM of
the intensity along the optical axis with large M values
is approximately equal to

(21)

This formula is less versatile, since it depends on λ.
Figure 3 shows the exact calculated curve of the function
K(0,z) near the resonance peak for M = 6, E = 12 keV,
d = 30 μm, and N = 3. It can be seen that the reso-
nance peak is only three times higher as compared
with other maxima and its FWHM is very close to that
of the Gaussian curve.

It should be noted that the actual aperture of the
lenses was not taken into consideration in these calcu-
lations. Nevertheless, the derived relationship between
the transverse and longitudinal FWHM of the reso-
nance peak is very similar to the analogous relation for
focusing by a single compound refractive lens. For
example, if the lens aperture is determined by absorp-
tion, then from the theory of focusing by a single lens
[11], we have for the transverse FWHM of intensity at
the focus wt = 0.6643(λfγ)1/2, where f = R/2δ is the
focal distance, γ = β/δ. On the other hand, for the lon-
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gitudinal FWHM, the estimate wl = (12)1/2f γ =

 can be derived. The only difference
between this formula and Eq. (21) is that the numeri-
cal factor is less by 7%.

TALBOT EFFECT FOR A FINITE NUMBER
OF SOURCES

The Talbot effect [12] may be formulated as a full
reproduction of the transverse periodic wave function
with a period of d for radiation propagation along the
optical axis (the z axis) over the distance zT = 2d2/λ.
The effect can be proven easily using the Fourier
transform. The periodic wave function can be pre-
sented in the form of the Fourier series:

(22)

where

(23)

The propagation of radiation over the distance z is
described by convolution of the wave function with the
Fresnel propagator:

(24)

Substituting (22) to (24) and taking the integral, we
derive

(25)

From this formula it follows right away that E(x, zT) =
E(x, 0). In other words, not only the radiation inten-
sity but also the complex wave function is repeated
completely during propagation over the Talbot dis-
tance zT.

This derivation is very simple for a fully periodic
wave field. However, no conclusions can be drawn
from it relative to a finite periodic system of point
sources. The intensity distribution for a finite number
of sources is described by Eq. (12), but at the Talbot
distances, peaks arise at the points xk = d[k – (M –
1)/2] = ±d/2, ±3d/2, … instead of the points 0, ±d,
±2d, …, as in the case of first-order resonance. This is
the first distinction of the Talbot effect from reso-
nances (the fractional Talbot effect).
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Let us substitute into Eq. (12) the coordinates xT =
±d/2 and zT = 2d2/λ and calculate the sums:

(26)

From this formula it follows that the intensity maxi-
mum for Talbot peaks in the case of a finite number of
sources M is half as high, as the one in the case of res-
onances. This is the second distinction of Talbot peaks
from resonances. Since the average intensity is main-
tained, it is evident that the transverse FWHM of Tal-
bot peaks is nearly twice as large as the one for the res-
onance peaks. More detailed analysis of the Talbot
effect is beyond the scope of this work, since Talbot
peaks are at a relatively large distance, and it is hard to
observe them experimentally.

NECESSARY CONDITIONS
FOR TRANSVERSE CONERENCE

The transverse coherence of radiation incident on
the object is directly related to the angular size of the
source determined at the distance from the source to
the object. If the coordinate xs of the point source
describes its deviation from the main optical axis, then
a temporary optical axis can be considered, on which
both the source and the object are located. It is obvi-
ous that this axis will be turned at the angle α = xs/z0
around the central point of the object. The interfer-
ence pattern for this source will be roughly the same,
only for the detector will it be shifted from the main
optical axis by the distance  = αz1 = xsz1/z0. As a
result, the complete pattern for the entire source will
correspond to the averaged pattern for the point
source with the interval of averaging equal to the size
of the source projection s = Sz1/z0, where S is the
actual size of the source.

In order to see peaks of Nth resonance without dis-
tortions, the source projection should be half the
transverse width of the resonance. With allowance for
Eqs. (4) and (16), we have

(27)

Typically, the focal distance of a compound refractive
lens is much less than the distances to the resonances,
which are formed by all lenses, and we can neglect it.
Combining the written formulas, we can rewrite the
condition in the form

(28)
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This condition has a very simple physical meaning. To
observe experimentally the calculated interference
FWHM corresponding to the interference of all sec-
ondary sources, the total aperture of the interferome-
ter dM should be less than the length of the transverse
coherence Ltc, as was determined in [13, 14]. If condi-
tion (28) is not satisfied for all interferometer lenses, then
the fringe pattern will correspond to an interferometer
with a smaller number of lenses; moreover, the number of
lenses is determined just from condition (28).

However, condition (28) has no practical use, since
it does not allow one to simulate experimental curves
of interference. For this purpose, it is more useful to
calculate the interference pattern for a point source in
the form of the intensity distribution function and
then to calculate the convolution of this function with
that of the source-projection brightness, for which the
FWHM is equal to s = Sz1/z0, where S is the FWHM
of the source-brightness distribution. Typically,
approximation of the function of the source brightness
by the Gaussian function is accepted. If the real size of
the source is unknown in the experiment, then this
procedure allows one to determine it from the com-
parison of calculated curves with experimental ones.

NECESSARY CONDITIONS
FOR LONGITUDINAL COHERENCE

The notion of longitudinal coherence is introduced
for nonmonochromatic radiation, whose photon
energy is distributed within a certain range ΔE. In
accordance with the uncertainty principle, pulses of
this radiation have a finite lifetime τ = ћ/(2ΔE), where
ћ is Planck’s constant divided by 2π. If the measure-
ment time substantially exceeds the radiation-pulse
duration, then the phase relations for waves with dif-
ferent frequencies, i.e., different energies, are lost, and
it is necessary to calculate the convolution of the func-
tion of radiation intensity for different monochro-
matic harmonics with the function describing the
radiation spectrum. In other words, function (12)
should be averaged over the radiation wavelength λ =
hc/E, where h is Planck’s constant, c is the speed of light,
the constant hc = 1.24 nm keV. Since function (12) is the
double sum of cosines, then each cosine should be
averaged independently.

In the case of a synchrotron-radiation source, the
real spectrum is determined by the monochromator.
Let us consider a simple situation when the spectrum
is described approximately by the Gaussian function

(29)

Then for the average of cosine, we derive the formula:

(30)

⎛ ⎞ ΔΔ = − =⎜ ⎟
⎝ ⎠

2

1 2 2
1( , ) exp , σ .

2.3552σ(2π) σ
E EW E E

〈 〉 =
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∫
2

1
1 11 2 2

cos( )

1 cos( [ ])exp ,
2σ(2π) σ

aE
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where a = 2πmd(x – ld)/(hcz). The integral is taken
analytically, and as a result of calculation, we derive
that each cosine within the sums over m and l in
Eq. (12) is additionally multiplied by the factor

(31)

The parameter Llc is known as the length of longitudi-
nal coherence. Let us note that the quantity Lml deter-
mines the path difference of beams for a pair of
sources with a center at the point ld. When the coordi-
nate x corresponds to the center of the pair, the path
difference for it equals zero.

From this it follows that for a particular point of the
detector with the coordinate x, the maximum contri-
bution to the intensity will be made by the sources,
which have the minimum path difference. It is evident
that the number of such pairs is maximum at x = 0 and
reduces as |x| increases. Figure 4 shows the result of
numerical calculation of the interference pattern with
the following parameters: E = 12 keV, M = 6, N = 3,

⎛ ⎞ −= − =⎜ ⎟
⎝ ⎠

= =
Δ Δ

2

2

2

( )exp 3.56 , ,

λ .
λ

ml
ml ml

lc

lc

L md x ldC L
zL

hcL
E

d = 30 μm, ΔE = 0.1 keV. It can be seen that the central
peaks did not change even in the case of a relatively
high degree of nonmonochromaticity. For the reso-
nance distances zN = d2/λN, the ratio Lml/Llc can be
written in another form, namely:

(32)

From this formula it can be seen that the ratio E/ΔE is
directly proportional to the number of peaks in the
central part of the interference pattern, which can be
seen experimentally.
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Fig. 4. Function K(x) for M = 6, E = 12 keV, p = 10 μm, and
ΔE = 0.1 keV.
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