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This paper reports computer simulations of X-ray six-beam (000, 220, 242, 044,

�224, �202) diffraction in a perfect silicon crystal of large thickness where the

super-transmission effect prevails, i.e. about 2 cm or more for an X-ray photon

energy of 8 keV. Both the plane-wave angular dependence and the six-beam

section topographs, which are obtained in experiments with a two-dimensional

slit, are calculated. The angular dependence is computed by means of an

eigenvalue problem in accordance with Ewald’s theory. The section topographs

are calculated by means of a fast Fourier transformation procedure from the

angular to real space. It is shown that under the effect of X-ray super-

transmission the quadrupole part of the photoelectric absorption as well as the

Compton scattering give apparent contributions to the minimum absorption

coefficient. Comparison of experimental and theoretical results by means of

measuring the effective absorption coefficient is proposed. The section

topographs for a thick crystal are asymmetric and polarization sensitive. These

properties are explained through the angular dependence and the stationary

phase method.

1. Introduction

This paper presents the results of the second part of our work,

the first part being published by Kohn & Khikhlukha (2016)

and referred to below as [1]. As was shown in [1], two-

dimensional section topography is a suitable method for

studying the six-beam (000, 220, 242, 044, �224, �202) X-ray

diffraction in a perfect Si crystal. It is especially useful in

experiments with synchrotron radiation (SR). Fig. 1 shows a

scheme of a possible experiment.

A narrow beam from the SR source (a bending magnet or

an undulator) is restricted by a two-dimensional (square) slit

which is located at a long distance Z0 (from 30 to 100 m) from

the source. Such an arrangement allows one to reach a high

degree of spatial coherence of radiation if the angular size of

the source Aso ¼ S=Z0 is much less than the angular diver-

gence of radiation due to a diffraction on the slit Asl ¼ �=D.

Here S is the source linear size (FWHM), � is the radiation

wavelength, D is the linear size of the square slit. This

condition is more commonly known in the form D<Ltc,

where Ltc ¼ �Z0=S is the length of transverse (spatial)

coherence.

The dynamical theory of multiple diffraction was formu-

lated by Ewald and Laue for monochromatic plane waves; for

more details see the books by Chang (2004) and Authier

(2005). This theory allows one to understand the phenomenon

in terms of dispersion surface, Bloch eigenwaves, absorption

coefficients. On the other hand, for a very narrow in space

beam another method of calculation exists which is based on

the n-beam Takagi equations (Okitsu, 2003).
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In the works of Okitsu et al. (2003, 2006, 2012) the n-beam

Takagi equations were numerically solved and the results were

compared with the experimental topographs. A rather good

agreement was achieved for a relatively thick crystal when the

size of the two-dimensional slit (pinhole) is much less than the

size of the topograph. However, these computer simulations of

multiple diffraction demand a supercomputer and a huge

amount of computing time (more than 2 h).

In [1] we have proposed another way to perform computer

simulations of section topographs for a multiple X-ray

diffraction. One can calculate first the angular dependence of

amplitudes of the transmitted and reflected plane waves. Then

the section topograph, for example, for a transmitted wave can

be calculated via a Fourier transformation of the amplitude

using the fast Fourier transformation (FFT) procedure. This

way is correct for perfect crystals, and it allows one to easily

take into account the size of the two-dimensional slit and the

distance between the slit and detector. The calculation time is

less than 10 min for a standard laptop.

In the present work, the results of an analysis of the effect of

a strong decrease in the X-ray beam absorption in a crystal

due to six-beam diffraction are discussed. This effect was first

formulated by Joko & Fukuhara (1967) and later investigated

in more detail by Afanas’ev & Kohn (1977). It is known that,

in the normal case, when there is no multiple diffraction, the

dipole part of the photoelectric absorption provides the main

contribution to the total absorption coefficient. We show that

under conditions of six-beam diffraction the quadrupole part

of the photoelectric absorption is as important as the dipole

part, and there is also absorption due to Compton scattering.

We propose a way of measuring the effective absorption

coefficient via a measurement of the total intensity of all

beams that leave the crystal. This method is simple to perform

because a strong collimation of the incident beam is not

necessary. In this case, it is sufficient to calculate only the

angular dependence of the intensity of all diffracted beams.

Finally, we have calculated a section topograph of the trans-

mitted beam for a rather thick crystal (of thickness 2 cm)

which is 20 times greater than in [1].

All calculations were performed for the energy E = 8 keV

which is close to the Cu K� line of the X-ray tube. It is

convenient to study the phenomenon of decreasing absorption

under the conditions when normal absorption is sufficiently

strong that the required thickness of the crystal can be

reduced.

2. Various channels of X-ray absorption

The geometry of six-beam diffraction is shown in Fig. 1 of [1].

Here we repeat definitions of geometrical parameters. We

consider a silicon crystal in the form of a plate of thickness t

with a surface normal to the unit vector n0 which has a

direction along the (1�11) of the cubic crystal lattice. The

wavevector of the incident plane wave k0 forms the angle �0
with the vector n0, and sin �0 ¼ 81=2�=a, where a is the crystal

lattice parameter. Then, for six reciprocal-lattice vectors hm
the Bragg condition jkmj2 ¼ jk0j2 is met, where km ¼ k0 þ hm.

Here, the index m ¼ 0; . . . ; 5 and its values correspond to the

Miller indices (000, 220, 242, 044, �224, �202).

We introduce the function Pvv0
Cf ðq; p; t;mÞ which was

considered in [1] for m ¼ 0 (transmitted beam). It describes

the angular dependence of the amplitude of themth diffracted

plane wave at the exit surface of the crystal. This angular

dependence is defined by coordinates q and p of the two-

dimensional vector u in the plane normal to k0. Below, we

show briefly how the function Pvv0
Cf can be calculated. If the

incident plane monochromatic wave has a wavevector

k00 ¼ k0 þ u, then inside the crystal it experiences refraction

and the wavevector becomes equal to k00 þ "n0=2. Diffraction

causes the appearance of additional plane waves with the

wavevectors k0m þ "n0=2, where k0m ¼ k00 þ hm.

The vector amplitude of the electric field of the mth

diffracted plane wave has two components in the plane normal

to km. We enumerate these components by the index v.

Sometimes we will denote the values of v as p; s. It is possible
to distinguish between p as the coordinate of u and p as the

polarization state (value of v) from the context. For each plane

wave we have three unit vectors emp, ems and sm where

sm ¼ km=K is a unit vector along the mth beam direction,

K ¼ 2�=� is a wavenumber. It is convenient to use symmetry

properties of the multi-beam pyramid, as was first proposed in

the work of Joko & Fukuhara (1967). In this case, all the

vectors ems lie in the plane of reciprocal-lattice vectors and

emp ¼ ½ems � sm�.
We denote the scalar components of the electric field vector

by ��1=2
m Emv, where the multiplier �m ¼ ðsmn0Þ is introduced

for convenience. Then, a standard procedure of averaging

Maxwell’s equation for the total electric field in the crystal

over a unit cell leads to a division of one equation into a

system of equations for each component Emv. This system can

be written in the form of the eigenvalue problem:P
nv0

Gvv0
mnEnv0 ¼ "Emv ð1Þ

for the scattering matrix G, which has the following form in

the dipole approximation:

Gvv0
mn ¼ �K�m

�m
�mn�vv0 þ

K�m�n

ð�m�nÞ1=2
ðemvenv0 Þ: ð2Þ
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Figure 1
A scheme of a possible experiment for six-beam diffraction section
topography.
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Here, �mn equals 1 if m ¼ n, and 0 otherwise, the parameters

�m ¼ ðjk0mj2 � jk00j2Þ=K2 depend on the angles � ¼ q=K
and ’ ¼ p=K, and the diffraction parameter �m is the

complex value that describes the amplitude of the

kinematical scattering by unit volume of the crystal. The

matrix G in equation (1) describes both the elastic scattering

(the real part of the matrix G0) and the absorption (the

imaginary part of the matrix G00). In our case the matrix

elements of G00 are much less than the matrix elements of G0,
which allows us to take them into account by means of

perturbation theory.

Therefore, the eigenvalue problem (1) is solved only

for the real matrix G0 which speeds up calculations. As a

result of solution, we obtain 2N real eigenvectors and 2N

real parts of eigenvalues, where N ¼ 6 is the number of

beams for our case. The absorption coefficients as imaginary

parts of eigenvalues are calculated later by means of the

formula

	j ¼ "00j ¼
P

mv;nv0
EðjÞ

mvðG00Þvv0mnE
ðjÞ
nv0 ð3Þ

where the index j enumerates the eigensolutions.

We note that equation (2) is close to the accurate one only

for the real part of the matrix G0 when it is sufficient to

consider only the dipole part of the scattering matrix. The

reason is that the Thomson scattering of X-rays on the elec-

tron density of atoms gives the main contribution, and it has a

purely dipole character. In this approximation

�0m ¼ � �
2r0
�V0

X
k

Nk fkðgmÞ þ�f1k
� �

FkðgmÞSkðhmÞ ð4Þ

where r0 ¼ e2=mc2 is the classic electron radius, e and m are

the charge and mass of an electron, c is the speed of light, V0 is

the volume of the unit cell.

A summation is carried out over the various kinds of atoms;

Nk is the number of atoms of kind k inside the unit cell, fkðgÞ is
the Fourier image of atomic electron density (atomic factor),

gm ¼ jhmj=4� ¼ sin �B=�, �B is the Bragg angle for the

diffraction on the reciprocal-lattice vector hm. We note that

fkð0Þ ¼ Zk is the number of electrons in an atom. The para-

meter �f1k is an additional term to the atomic factor due to

the photoelectric absorption. The parameter FkðgÞ is the

thermal factor and SkðhmÞ is the structure factor,

FkðgÞ ¼ expð�8�2g2hu2kiÞ; SkðhmÞ ¼ n�1
k

Pnk
i¼1

expð�ihmrikÞ;
ð5Þ

where hu2ki is the mean square thermal displacement of an

atom, rik is the position of the ith atom of the kth kind, nk is the

number of such positions. We note that F2
kðgÞ equals the

Debye–Waller factor, and in our case SkðhmÞ ¼ 1 for all

reflections.

The imaginary part G00 is determined only by the processes

of photoelectric absorption and Compton scattering. The

photoelectric interaction of radiation with an atom occurs on

the inner atomic shells which have a small but finite size.

Therefore, both the intensity of radiation and the first spatial

derivative of intensity are important. They correspond to the

dipole and quadrupole terms of multipole expansion. As a

result we have

ðG00
PEAÞvv

0
mn ¼

Kð�00m�nÞPEA
ð�m�nÞ1=2

fð1�QÞðemvenv0 Þ

þQ½ðemvenv0 ÞðsmsnÞ þ ðemvsnÞðenv0smÞ�g ð6Þ
where PEA stands for photoelectric absorption. Here ð�00mÞPEA
has to be calculated from the experimental value of the

photoelectric absorption coefficient,

ð�00mÞPEA ¼ �2r0
�V0

X
k

Nkf2kFkðgmÞSkðhmÞ; ð7Þ

where f2k is an additional imaginary term to the atomic factor

due to a photo effect, which can be obtained from the tables

(we use the DABAX table from http://ftp.esrf.eu/pub/scisoft/

xop2.3/DabaxFiles/) together with the �f1k. They are inde-

pendent of the index of reflection because it has very weak

angular dependence. The parameter Q ¼ 
Q=ð
D þ 
QÞ,
where 
D;Q are cross sections of the dipole and quadrupole

contributions to the photoelectric absorption. The values of Q

were calculated by Hildebrandt et al. (1975). In our case

Q ¼ 0:019.
Compton scattering occurs on all electrons of an atom but

this interaction is not local. In the normal case the X-ray

absorption due to Compton scattering is very weak and can be

neglected. However, under conditions of the Borrmann effect,

when the photoelectric absorption decreases, this channel

becomes relatively more important and needs to be accounted

for. This fact was first noted by Giardina & Merlini (1973) for

the two-beam case. The suitable formulae were derived by

Sano et al. (1969). Taking into account the results of this work,

for the case of a crystal having atoms of the same kind (k ¼ 1),

we can write

ðG00
CSÞvv

0
mn ¼

8�r20N1

3V0

F1ðgm�nÞ f1ðgm�nÞðemvenv0 Þ ��vv0
mn

� � ð8Þ

where

�vv0
mn ¼

3

8�

Z
ds½ðemvenv0 Þ � ðemvsÞðenv0sÞ�

�
X
��

f
��
1 ðs� smÞf ��1 ðsn � sÞ: ð9Þ

Here the functions f
��
1 ðsÞ mean the matrix elements between

the atomic electron states � and � from the quantityP
i expðiKsriÞ where ri is a vector of position of the ith elec-

tron, and the summation is carried out over all electrons. We

note that f1ðgm�nÞ ¼
P

� f
��
1 ðsm � snÞ.

We do not know the tables for the functions f
��
1 ðsÞ similar to

the tables for f1ðgÞ, and there is a problem in calculating the

matrix �vv0
mn. Fortunately, we can conclude that multiple

diffraction will lead to a decrease in the term containing

�vv0
mn similarly to the dipole part of the photoelectric absorp-

tion because it depends weakly on the reciprocal-lattice

vectors of reflections. Therefore, we can neglect this term and

consider only the first term in the square brackets of equation
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(8). In this approximation we have a relation ðG00
CSÞvv

0
mn ¼

�ð4�r0=3�ÞðG0Þvv0mn where the matrix G0 is taken at the point

� ¼ ’ ¼ 0.

Finally, taking into account boundary conditions, as was

shown in [1], we can write

Pv0v
Cf ðq; p; t;mÞ ¼ �0

�m

� �1=2X
j

E
ðjÞ
mv0E

ðjÞ
0v expði"jt=2Þ ð10Þ

where j is an index of the eigensolution and "j is a complex

value so that the absorption coefficient 	j ¼ "00j . We note that

the quantity ðEðjÞ
0vÞ2 has a sense of excitation degree for the jth

eigensolution (Bloch wave) and for the v-polarized incident

wave.

We have performed a numerical solution of the eigenvalue

problem of equation (1) at the central point � ¼ ’ ¼ 0, taking

into account various channels of absorption, i.e. dipole (D),

quadrupole (Q) and Compton (C) channels, for the photon

energy E = 8 keV. The input data for a calculation are shown

in Table 1. The parameters K�00m in Table 1 are shown for the

sum of all channels D + Q + C; the calculations were also

performed for three cases – with the D channel only, D + Q

channels and all three channels. The results are shown in

Table 2.

As shown by Afanas’ev & Kohn (1977), at this point the

eigenvalue problem has an analytical solution which can be

derived from the symmetry properties. There are four twice-

degenerated solutions which are excited for both polarizations

p and s. They are denoted as 1ps +, 1ps�, 2ps +, 2ps�. There

are four non-degenerated solutions which are excited only for

one polarization, and they are denoted 3p, 3s, 6p, 6s.

Since the degenerated solutions have the same eigenvalue,

the only sum of their excitation degree has a physical meaning.

Therefore, in Table 2 we show only eight various eigen-

solutions and their excitation degrees. The line corresponding

to number 9 shows the values for a normal case, i.e. without

diffraction. In this case, an absorption coefficient is equal to a

mean value and an excitation degree equals the sum of all the

above-mentioned values.

The solution 3p with a minimum absorption coefficient is

excited only for p polarization. There are three solutions with

very small absorption coefficients. One can see that the p

polarization is more excited for all three solutions. The table

clearly shows that we cannot neglect quadrupole and

Compton channels of absorption in estimating the minimum

absorption coefficient because all three channels give

comparable contributions.

3. Effective absorption coefficient

There is a problem in measuring the plane-wave minimum

absorption coefficient. For this experiment one needs to

collimate strongly the incident beam because the angular

dependence of small absorption coefficients is very strong.

Instead, one can use the experimental scheme shown in Fig. 1

with the two-dimensional slit. In this scheme it is necessary to

measure the integral intensity of all beams leaving the crystal

through the exit surface. In other words, we need to measure

the z component of the Poynting vector SzvðtÞ where v is an

index of incident wave polarization.

In reality, one can register section topography pictures for

all beams and calculate the intensity in all pixels. There is

another way, namely, to use a detector with a big window

placed just behind the crystal. Then, all beams will go to the

same detector. To calculate this value we have the formula

SzvðtÞ ¼
P
mv0
�m

R
dx dy  v0v

m ðx; yÞ�� ��2: ð11Þ

On the other hand, as was shown in [1], the section topograph

of the mth beam is described by the following formula:

Imvðx; yÞ ¼
P
v0
 v0v

m ðx; yÞ�� ��2 ð12Þ

where

 v0v
m ðx; yÞ ¼

Z
dqdp

ð2�Þ2 expðiqxþ ipyÞ

� Pv0v
Cf ðq; p; t;mÞP2f ðq; p; ztÞTf ðq; pÞ: ð13Þ

Here zt ¼ Z1 þ Z2, and the distances Z1 and Z2 are shown in

Fig. 1,

P2f ðq; p; zÞ ¼ exp �i
�z

4�
ðq2 þ p2Þ

� �
; ð14Þ

Tf ðq; pÞ ¼ 4x0y0 sinc ðqx0Þ sinc ðpy0Þ; ð15Þ

sinc ðxÞ ¼ sinðxÞ
x

: ð16Þ

The parameters x0 and y0 represent half the size of the two-

dimensional slit horizontally and vertically. For a square slit

y0 ¼ x0.
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Table 1
The input data for computer simulations.

hkl �B (�) K�0m (0.1 mm�1) K�00m (0.01 mm�1)

000 0 �6.236827 1.433822
220 23.80108 �3.811071 1.389435
242 44.34609 �2.781228 1.304741
044 53.81598 �2.439140 1.264350

Table 2
The absorption coefficients in cm�1 for dipole (D), quadrupole (Q),
Compton (C) channels of absorption, and the excitation degrees (ED)
(p and s polarizations) for various eigensolutions at the central point
� ¼ ’ ¼ 0.

n Type D D + Q D + Q + C ED p ED s

1 1ps� 928.88 913.09 915.14 0.105 0.228
2 6p 907.30 907.87 909.92 0.167 0.000
3 6s 43.05 42.53 43.15 0.000 0.167
4 2ps� 29.09 39.99 40.49 0.101 0.232
5 1ps+ 23.18 27.53 27.97 0.228 0.105
6 3s 0.68 1.20 1.47 0.000 0.167
7 2ps+ 0.39 0.56 0.80 0.232 0.101
8 3p 0.25 0.43 0.67 0.167 0.000
9 Norm 242.86 242.86 243.66 1.000 1.000
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It is easy to verify thatZ
dx dy  v0v

m ðx; yÞ�� ��2¼
Z

dqdp

ð2�Þ2 Pv0v
Cf ðq; p; t;mÞ�� ��2 Tf ðq; pÞ

�� ��2:
ð17Þ

Then

�m Pv0v
Cf ðq; p; t;mÞ�� ��2 ¼ �0

P
j

E
ðjÞ
mv0E

ðjÞ
0v

	 
2

expð�	jtÞ

þ 2�0
P
j<j0

E
ðjÞ
mv0E

ðjÞ
0vE

ðj0Þ
mv0E

ðj0Þ
0v

� cos½ð"0j � "0j0 Þt=2� exp½�ð	j þ 	j0 Þt=2�:
ð18Þ

The second term in equation (18) contains an oscillating

multiplier with a very small period of oscillation for a large

crystal thickness t. Since we are interested in only integral

value (17), this term can be neglected. We can also use the

relation
P

mv0 ðEðjÞ
mv0 Þ2 ¼ 1 which follows from the property of

eigensolutions.

Finally, we introduce the effective absorption coefficient

(EAC) of the first kind by means of the formula

expð�	ðvÞ
e1 tÞ ¼

SzvðtÞ
Szvð0Þ

¼ A�1

Z
dqdp

ð2�Þ2 Tf

�� ��2CvðtÞ ð19Þ

where A ¼ 4x0y0 is a slit area,

Cvðq; p; tÞ ¼
P
j

E
ðjÞ
0v

	 
2

expð�	jtÞ: ð20Þ

The integral in equation (19) is easy to calculate because the

integrand depends weakly on q and p, and very many points

are not necessary. However, this definition is not complete.

Indeed, we can fix the slit at the position normal to the beam,

but the crystal can be rotated on arbitrary angles. This will give

various values. Therefore, we propose selecting such angular

positions of the crystal for which 	ðvÞ
e1 reaches the minimum

value.

Since the function CvðtÞ is symmetrical over the p coordi-

nate, this position is easily found along the p axis. In this case,

the points of maximum of jTf j2 and CvðtÞ coincide. For the q

axis, the situation is more complex because the function CvðtÞ
is not symmetrical. Therefore, it is necessary to make a

calculation for various values of an angular shift of the crystal

relative to the slit. We note that the optimum position of the

crystal becomes different for different polarization.

Although the integral in equation (19) is calculated in the

infinite limits, the areas where the functions jTf j2 and CvðtÞ are
not zero have finite sizes. It is convenient to calculate the

angular dependence of each function within its area. Then, the

area of integration is an intersection of two areas. This area

can be different for different values of the crystal angular shift.

For small crystal thicknesses the area of jTf j2 is less than that

of the crystal. For large thicknesses the situation is the

opposite.

We can introduce the EAC of the second kind by means of

the formula

exp½�	ðvÞ
e2 ðt � t0Þ� ¼

SzvðtÞ
Szvðt0Þ

: ð21Þ

In this case one needs to have two crystals of different

thicknesses. It is more difficult to perform, but can give a

smaller value of the EAC, especially for thick crystals. Indeed,

the crystal of thickness t0 now plays the role of collimator. It

creates the beams of small angular divergence, and we can

observe a transmission of all beams of such radiation through

the crystal of thickness ðt � t0Þ. In this case, slit size is less

important than in the first case.

We have performed calculations of the EACs of both kinds

for various crystal thicknesses and the square two-dimensional

slit with a linear size 40 mm. The case D + Q + C was

considered. The results are shown in Table 3. The difference

t � t0 = 0.2 cm for all values of t. In accordance with the data of

Table 3, EACs of both kinds for p polarization are less than

EACs for s polarization. The values of EACs of the second

kind are less than those of the first kind but the difference

becomes smaller for large thicknesses. The difference between

the two polarizations also becomes smaller for large thick-

nesses.

It is of interest that the values of the EAC of the

second kind for t = 8 cm are close to the minimum values

shown in Table 2. However, even for t = 2 cm the value of the

EAC is rather small and only two eigensolutions exist for

both polarizations. But it is sufficient for observing the

Pendellösung fringes in the section topograph as will be shown

below. As is known, in the two-beam case the Pendellösung

fringes are absent under the conditions of the Borrmann

effect.

34 V. G. Kohn � Six-beam diffraction in Si. II Acta Cryst. (2017). A73, 30–38
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Table 3
The effective absorption coefficient for E = 8 keV, t � t0 = 0.2 cm.

t (cm) 	p
e1 (cm

�1) 	s
e1 (cm

�1) 	p
e2 (cm

�1) 	p
e2 (cm

�1)

2 2.08 2.74 1.15 1.39
3 1.74 2.24 1.02 1.18
5 1.42 1.77 0.89 0.97
8 1.21 1.45 0.81 0.85

Figure 2
The functions Cvð�; ’; tÞ for v ¼ p (left) and v ¼ s (right) for t = 8 cm. The
� (horizontal) and ’ (vertical) axes have the same units which are shown
above the colour maps. The contrast is shown from zero to maximium
values which are equal to 1:55� 10�3 for p and 2:41� 10�4 for s
polarizations.
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On the other hand, the value of the relative transmission

intensity (RTI) in this case is rather small, namely,

expð�	ðpÞ
e1 tÞ ¼ 6:25� 10�5 for t = 8 cm. There are several

reasons for this intensity decrease. First, only part of the

incident radiation undergoes weak absorption. Secondly, this

effect is realized only within a narrow angular area near the

central point while the angular area of incident radiation is

much larger. It is formed by the two-dimensional slit. Of

course, for a larger two-dimensional slit the relative intensity

will have a larger value. However, we cannot increase the size

of the two-dimensional slit infinitely because the angular

divergence of the SR source limits the collimation.

It is of interest to discuss the angular dependence of the RTI

for plane waves, i.e. without a slit influence, and for the two

polarizations separately. These values are described by equa-

tion (20) if one replaces the coordinates q and p by the angles

� ¼ q=K and ’ ¼ p=K. Fig. 2 shows this angular dependence

as colour maps with a linear scale of intensity variations. The

correspondence between colours and function values is shown

above the maps where the value 1.0 is shown instead of the

real maximum value which is different for the different

polarizations. The maximum value for the p polarization is five

times greater than that for the s polarization (see the figure

caption).

The structure of the angular dependence is different too.

The reason for this difference is the fact that for the p polar-

ization the incident 000 wave interacts strongly with 220 and

�202 reflected waves while other reflected waves, i.e. 242, 044

and �224, interact weakly. For the s polarization the situation

is the opposite. Therefore, the region of high intensity for the

p polarization is oriented between the lines of the Bragg

condition for 220 and�202 reflections with a strong horizontal

asymmetry, while the same region for the s polarization is

oriented along the 044 line and is more symmetric.

Fig. 3 shows the angular dependence of intensity for each

beam separately and for the p polarization. Fig. 4 shows the

same for the s polarization. The functions shown in the figures

are determined by the formula

Cmvð�; ’; tÞ ¼
P
j;v0

E
ðjÞ
mv0E

ðjÞ
0v

	 
2

expð�	jtÞ: ð22Þ

All six maps are shown on the same scale with a maximum

value 5:81� 10�4 for the p polarization which corresponds to

the 000 beam, and 5:36� 10�5 for the s polarization which

corresponds to the 242 beam. These figures illustrate clearly

the role of various beams for different polarizations. We can

conclude that the p polarization and the 000 beam are

preferred for a collimation of radiation by means of the effect

of super-transmission of X-ray radiation under the conditions

of six-beam diffraction. The two-dimensional angular diver-

gence of the beam of less than 1 mrad can be achieved.

4. Section topography of a thick crystal

As was shown in [1], the section topograph of the mth beam

for a perfect crystal can be calculated by means of formulae

(12) and (13) via the Fourier image of the product of three

functions. For a thick crystal the angular area of integration is

rather small. Therefore, the Fourier image of the Fresnel

propagator (14) for a mean distance zt and the Fourier image

of the two-dimensional slit (15) are slow functions which

influence weakly the section topograph. The structure of the

topograph depends mainly on the crystal diffracting proper-

ties.

Since several eigensolutions have a small absorption coef-

ficient there is interference between them, resulting in strong

oscillations of the function Pv0v
Cf ðq; p; t;mÞ in some angular

regions. This is why the integral should be calculated by an

FFT procedure on the set of points with a very small step. On

the other hand, one needs many points to cover the area
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Figure 3
The functions Cmpð�; ’; tÞ for various values of the reflected beam index
m, i.e. 000, 220, 242, 044,�224,�202, and for p polarization, t= 8 cm. The
order is from left to right and from top to bottom. The � (horizontal) and
’ (vertical) axes have the same units which are shown above the colour
maps. The axes are shown by yellow lines. The contrast is shown from
zero to the value 5:81� 10�4 for all beams which is the maximum for the
000 beam.

Figure 4
The functions Cmsð�; ’; tÞ for various values of the reflected beam index
m, i.e. 000, 220, 242, 044, �224, �202, and for s polarization, t = 8 cm. The
order is from left to right and from top to bottom. The � (horizontal) and
’ (vertical) axes have the same units which are shown above the colour
maps. The axes are shown by yellow lines. The contrast is shown from
zero to the value 5:36� 10�5 for all beams which is the maximum for the
242 beam.
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where the function modulus has significant values. As was

shown above, the transmitted beam is more interesting.

Fig. 5 shows the section topographs of the transmitted beam

for the crystal thickness t = 2 cm which is 20 times greater than

for the crystals shown in [1]. The calculation was performed

for zt = 100 cm, for the square slit with a linear size 40 mm and

on the set of 8192� 8192 points with the same angular step

0.0015 mrad for both directions. The array of complex numbers

on this set of points demands 1 GB of computer memory. To

simplify the calculation we use the properties of the functions

Pv0v
Cf ð�; ’Þ and an FFT procedure.

First, the functions Pv0v
Cf ð�; ’Þ are symmetrical and decrease

faster on the ’ axis. Therefore, they are calculated only on the

set of 8192� 2048 points, which results in a 4� decrease in the

computing time. The region 0<’<’max=2 was used. The FFT
procedure �! x was also calculated in the 2048 points for the

same ’ values. The functions of ðx; ’Þ arguments were saved

only in the interval �xmax=2< x< 0, i.e. for 2048 points again

because the functions are close to zero for other points. The

FFT procedure ’! y was calculated in the same x interval

but for 8192 points on the ’ axis. For this, the functions were

symmetrically enhanced on the interval �’max=2<’<’max=2
and other points were filled by zero values. The results were

saved in the interval �ymax=2< y< ymax=2 on a set of 4096

points. The pictures in Fig. 5 were obtained from arrays of

2048 � 4096 points.

The procedure described above allows us to decrease both

the computing time and the computer memory. The computing

time is determined mainly by the calculation of the functions

Pv0v
Cf ð�; ’Þ. The use of an FFT procedure significantly speeds up

calculation of the Fourier transformation. However, one has to

choose carefully the steps and number of points because they

cannot be arbitrary. Sometimes the region of integration must

be much larger than the region of the apparent values of the

function. Such a procedure is called oversampling (Miao et al.,

2002).

It is known from n-beam Takagi equations that for

relatively small values of both the distance zt and the slit

size, the section topography area is limited by a six-beam

hexagon. In our case it has sizes Xt ¼ 2t sin �0 = 3.23 cm

horizontally (along the 044 reciprocal-lattice vector) and Yt ¼
2t tan �0 sin 60

� = 4.73 cm vertically, where �0 = 53.8� (see Fig. 1
in [1]). The right-hand side of this hexagon is shown in Fig. 5.

A ray along the incident beam corresponds to the extreme

right point of the hexagon. This point is also the central point

of the calculated area. One can see that a strong asymmetry of

intensity distribution still takes place even for a thick crystal.

First, for the p polarization the region of high intensity has the

form of an arc at the right side of hexagon. It is of interest that

this arc was observed by Umeno (1970) in the first experiment

of six-beam section topography made with very low resolu-

tion.

The section topographs contain three elliptical rings for

both polarizations. The outer rings are asymmetrical and do

not contain interference fringes. This means that they are

formed by only one eigensolution. The middle rings contain

fringes and they are asymmetrical, but the asymmetry is

weaker than for the outer rings. The inner ellipses have fringes

and they are close to being symmetric. They are located at the

centre of the hexagon. This property is similar to the two-

beam case.

It is evident that just the inner ellipses are formed by the

central region of angular dependence near the point (0,0)

where the absorption coefficients reach minimum values. With

increasing crystal thickness their visibility will increase. As was

shown by Kohn & Toneyan (1986), the stationary phase

method allows one to make a correspondence between the

intensity of section topograph points and characteristics of

plane-wave multiple diffraction such as the shape of the

dispersion surface (DS), the amplitude of reflection and

absorption coefficient. This correspondence is simpler when

many branches of the DS (i.e. eigensolutions) are absorbed

and do not work.

For example, the central part of the DS is symmetrical and

just forms the central part of the section topograph. The left-

hand part of the angular dependence forms the right-hand

part of the section topograph because for this region the

Poynting vector is directed close to the direction of the

transmitted beam. Such a property of the DS is also known in

the two-beam case. The interference fringes are not

pronounced due to the fact that one of the rays has a small

amplitude as a result of absorption. However, one can observe

that they have variable period. It is evident that the source of
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Figure 5
The section topographs of the transmitted beam for t = 2 cm, zt = 100 cm
for p (left) and s (right) polarizations. The logarithm of relative intensity
is shown. The white contour shows the boundary of the multi-beam
hexagon which has sizes 3.23 cm horizontally and 4.73 cm vertically.
Compression of the horizontal size is due to a projection of the hexagon
from the exit crystal surface to the plane normal to the transmitted beam.
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interference is the existence of several eigensolutions or

branches of the DS. Nevertheless, a correspondence between a

source and a result is very complicated, and additional study of

the problem is necessary.

5. Discussion and conclusion

The phenomenon of X-ray six-beam diffraction in a perfect

crystal and the effect of super-transmissivity is of interest

mainly for the case of a plane incident wave. However, it is a

very difficult task to prepare the plane wave with a high

accuracy because of the very strong angular dependence of

interaction between the X-ray radiation and the crystal lattice.

On the other hand, six-beam section topography for a thick

crystal is rather different from the two-beam case.

In the two-beam case one uses mainly the reflected beam

section topographs due to their symmetry and the large period

of fringes in the central part of the topograph. The inter-

ference exists only for thin crystals. For thick crystals the

interference is absent, and both the incident and the reflected

beams show the peak of intensity in the central part of the

one-dimensional picture.

The six-beam section topographs are asymmetrical for all

beams, and only the transmitted beam interacts strongly with

all diffracted beams. The interference fringes exist even for a

very thick crystal and have a rather complicated structure. The

reason for this property is the existence of several eigen-

solutions with a small absorption coefficient. Below, to

simplify the notation, we will use the symbol " only for a real

part, i.e. "0. The imaginary part will be denoted as 	.
It is known that the functions "jð�; ’Þ for various eigen-

solutions can be considered as various branches of the DS. The

asymmetry of section topographs is a consequence of asym-

metry of angular dependence of eigenvectors, particularly the

excitation degrees ðEðjÞ
0vÞ2. For a large crystal thickness t > 2 cm,

only three eigensolutions with indices 6, 7, 8 in Table 2 give an

apparent contribution.

Fig. 6 shows two nonzero terms,

CvðjÞ ¼ ðEðjÞ
0vÞ2 expð�	jtÞ; ð23Þ

in the sum of equation (20) as a function of angle � at the line
’ ¼ 0. As follows from the calculations, the solution of index 7

stays degenerated, the non-degenerated solution of index 6 is

absent for p polarization whereas the solution of index 8 is

absent for s polarization. Therefore, for both polarizations

only two different solutions exist.

The functions 	jð�Þ are symmetrical and the absorption

leads to a decrease in the value of the quantity (23) at large

distances from the central point � ¼ 0. However, two func-

tions CvðjÞ for both polarizations have a point of maximum at

opposite sides of the axis �. The functions for p polarization

have larger values and a stronger derivative at the central

point.

Fig. 6 shows that the curve of each eigensolution has strong

asymmetry, but different curves can compensate each other

because their asymmetry is opposite. However, since the

maximum values are different the compensation is not

complete. On the other hand, it is easy to understand that the

interference is possible only within the small region near the

central point where both solutions exist simultaneously.

The fact of a strong derivative of eigenvectors at the central

point follows from the existence of branches of the DS with a

small distance between them. It was shown by Kon (1976a,b)

that the formula for a derivative of the eigenvector can be

written as

@EðjÞ
mv

@�
¼

X
k 6¼j

EðkÞ
mvAkj

ð"j � "kÞ
ð24Þ

where

Akj ¼
X
mv

EðkÞ
mv

@ðG0Þvvmm

@�
EðjÞ

mv: ð25Þ

Here, only non-degenerate solutions are assumed and we take

into account the fact that only the diagonal elements of the

matrix G0 depend on �. It directly follows from equation (24)

that a small distance between the branches of the DS leads to

an increase in the derivative of the eigenvector. The smallest

distance occurs at the central point.

Considering various branches of the DS, it is possible to find

a correspondence between the angle � and the coordinate x at

the section topograph. For each branch of the DS the inte-

grand in equation (13) is an exponential function of the

complex argument. According to the stationary phase

approximation, the main contribution to the integral gives the

region where the phase derivative equals zero.

On the line ’ ¼ 0 we have the next equation from this

condition:

xjð�Þ ¼ zt � � tE1jð�Þ; E1jð�Þ ¼
1

2K

@"j
@�
: ð26Þ
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Figure 6
The curves of � dependence of contribution of various eigensolutions to
the integral transmission intensity for the crystal of thickness t = 2 cm.
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We note that the inequalities �Xt < tE1j< 0 follow from

calculations and have a simple geometrical sense from multi-

beam Takagi equations. The calculations show that if zt ¼ 0

then the central point � ¼ 0 corresponds to xj ¼ x0 ¼ �Xt=2
for all branches of the DS. The point x0 is the central point of

the section topograph.

We are interested in the branches with the smallest

absorption coefficient. For p polarization branch 8 has

maximum excitation at �m8< 0 and calculations show that

x0< xm8. Therefore, the bright maximum at the right of the

section topograph corresponds to only this branch, and

interference is impossible. For s polarization branch 7 has

maximum excitation at �m7< 0 and calculations show that

x0< xm7< xm8. On the other hand, interference is more

pronounced for s polarization at the central region of the

topograph.

Finally, we can conclude that an analysis of the angular

dependence of plane-wave six-beam diffraction and usage of

the stationary phase method allow us to understand peculia-

rities of the section topographs of six-beam diffraction for a

thick crystal. We can also estimate the role of distance zt. For �
= 1 mrad and zt = 100 cm the shift of coordinate �x = 1 mm
which is much less than Xt = 3.23 cm.

The effect of X-ray super-transmission can be used for a

quality diagnostic of a thick silicon single crystal by means of

comparison of the measured effective absorption coefficient

with the results of calculation. It is of interest to study the

interaction of a power radiation of an X-ray free-electron laser

with a single crystal under the conditions of very little

absorption.

We note that our method of computer simulations is valid

for all multiple X-ray diffraction cases with three, four, five,

six, eight, 12 strong waves or more. We will consider other

cases in future work.
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