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Microvoids in Solids: Synchrotron Radiation Phase
Contrast Imaging and Simulations

Victor G. Kohn, Tatiana S. Argunova,* and Jung Ho Je

Phase contrast imaging study and computer simulations of microvoids located
in solid materials of complex structure have been reported. Images of
microvoids arise as interference fringes due to coherent scattering of synchro-
tron radiation (SR) in matter. In the first part of this work, the simulation of the
experimental image of a single tubular microvoid in a SiC crystal to illustrate
the advantages and limitations of one-dimensional (1D) phase-contrast method
and to discuss the approach to 2D objects has been performed. In the second
part, a new iterative method for the variable wave function of radiation is
employed to examine the applicability of the phase-contrast method for an array
of tubules. The latter method has been shown to be sufficiently accurate to be
useful when a number of tubules along the beam is limited. Finally, the
interference patterns generated by waves passing through a phantom dentin
specimen have been calculated and analyzed. It has been demonstrated that
both methods have extensive possibilities to determine the period in the lattice

of tubules, even in the presence of some disorder.

1. Introduction

Solid materials may contain inhomogeneities, such as micro-
cracks, micropipes, minute cavities and pores. Despite the small
size, they can be detected using synchrotron radiation (SR). A
thickness variation of a few micrometers, for instance associated
with a cavity within the material, can produce a noticeable phase
shift of the coherent SR beam. This leads to curving the surfaces
of constant phase, and, at some distance from the specimen, to
an inhomogeneous distribution of intensity that can be revealed
through the phase-contrast technique pioneered date back to the
mid-1990s.1"%)
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Since 1995, more than 1000 papers have
been published by various workers using
this technique (see, e.g., reviews [3,4]).
Among them, there have been many
reports on experiments only. Meanwhile,
there is an acute need to develop techni-
ques for obtaining quantitative informa-
tion from image data. There are two ways to
work out the inverse problem of the phase
determination: computer simulations and
direct phase retrieval. Even the first study!"
had already reported on the computer
simulations. Later this approach was used
to optimize experimental parameters (see,
e.g., refs. [5,6]) or to investigate materials
and objects, some of which are similar to
those used for this study.”® On the other
hand, various procedures have been devel-
oped for the retrieval of phase maps (see,
e.g., refs. [9-11]). Owing to them, the phase
determination is now routinely used to
obtain real-space parameters of materi-
als.l"” Further development of quantitative imaging is of special
theoretical and practical interests.

There are three kinds of phase-contrast images which depend
on the sample-to-detector distance. Near-field images are
obtained at short distances. Far-field images are obtained at
large distances, and Fresnel images are obtained at intermediate
distances, where the diameter of the first Fresnel zone is
comparable with the transverse size of the object. Available
reports on the quantitative phase determination mainly contain
experimental images recorded in the near-field of the specimen.
Such data can be interpreted on the basis of the quasi-
geometrical optics approach which is only weakly sensitive to the
spatial and temporal coherence of X-ray radiation. It should be
noted that these studies have not addressed objects of relatively
small transverse size. For instance, the image of a micrometer-
sized cavity acquired with an effective pixel size slightly less than
a micrometer will not show discernible details in the near field.
In the far field the image will have a larger size, but a lower count
rate (intensity) in the same period of time. The intensity can be
increased by using a pink beam of relative bandwidth ~0.1. A
great loss of monochromaticity will, however, lead to a
significant reduction of the contrast to a value less than 1%.
Under these conditions, the phase-retrieval methods based on
the Maxwell equation for a coherent beam face a serious
problem.

Nevertheless, it is still possible to fit the images and determine
the size of micro-objects via computer simulations. Starting
with a certain model of an object with several parameters, we
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determine the real parameters when we arrive at the best match
to the experiment. Kohn et al.'*'® have developed 1D and 2D
simulation techniques which have the essential advantage of
providing summation over the spectrum. The fitting procedures
use standard approximations. In particular, the change in the
trajectory of X-rays within the object is neglected, and the wave
function acquires a phase shift and a change in amplitude due to
changes in the electron density and absorption. The methods
were applied to microvoids in a crystalline matrix.

Unlike single crystals in which voids are relatively sparse,
some materials, e.g., biocomposites, such as bone tissues or
dentin, can contain dense arrays of voids that are proven to play a
significant role in toughening.!'”*®) At present, microstructure
of biocomposites is of great interest. The reason for the interest
is that they promise great potential for medical, tissue
engineering, and bioinspired applications. Dentin contains a
lattice of well-ordered or quasi-ordered tubules. Despite the
extensive structural information obtained by other methods
(e.g., SEM, TEM, AFM, etc.), it is still the question of how the
dentinal tubules are arranged in space. To clarify this problem, it
may be interesting to explore the possibilities of the non-
destructive phase-contrast technique™? in combination with
computer simulations. This could prove advantageous compared
to the other SR methods.”'*) However, the summation of the
phase shift, produced by a single tubule, along the X-ray
trajectory that is assumed to be unchanged may be inaccurate
because the perturbation of the wave-function in fact occurs over
the entire volume of a relatively large specimen. We are unaware
of a work that would account for a variable wave function of
radiation.

The aim of this work is to develop a more accurate approach
that offers a solution to the problem of computer simulations of
images of complex biomaterials. We generate simple model
systems of multiple tubules. Then we calculate the interference
patterns and compare the results of the phase-contrast method
with those of the new iterative method for the variable wave
function of radiation. This allows us to determine the
applicability of the phase contrast method. Next we apply the
phase contrast method to study the variation in the image of a
phantom dentin specimen with the distance from the specimen
to detector.

We begin with a brief example of a tubular void in a single
crystal to show the principles of simulating the images of 1D
objects. This is followed by a description of the basics of
simulating the images of 2D objects, represented by more
complex model systems of tubules.

2. A Tubular Void in a Single Crystal

2.1. 1D Simulation Program and Theory

Voids in solids produce strong variations of the electron density,
which allows to image them using phase contrast methods. Let
the material density vary in two directions, i.e., along and across
the beam, and let a coordinate x be directed across the beam. In
the phase-contrast method, an object is described by the
transmission function T(x), which is the ratio of the wave
function of radiation directly behind the real object (i.e., with
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voids) to the wave function of the ideal object (i.e., without voids).
Since we neglect the deviation of the ray trajectories inside the
object, the transmission function can be represented by the
exponent

T(x) = exp(iK rt(x)) )

where K= 2x/A = (2x/hc)E is the modulus of the wave vector of
monochromatic radiation, A is the wavelength, E is the photon
energy, h is the Planck’s constant, ¢ is the velocity of light,
n=8—if=1—n (n is the complex refractive index of the
material around the voids), #(x) is the variable thickness of the
material in the path of the beam passing through the point x,
with account of the voids.

In fact, t(x) is the thickness of the voids; for this reason, the
exponential argument has a plus sign. That is, the phase in
the void becomes larger in comparison with the material.
The same holds for the amplitude. In this model, the density
is assumed to be homogeneous everywhere, except for the
voids in which the material is absent. If the material has an
inhomogeneous density, then one can say that the voids have an
effective thickness.

In crystals, single voids are usually observed. We are
interested in cylindrical voids with an elliptical cross-section
in which Dy is the longitudinal diameter (along the beam), D is
the transverse diameter (across the beam). In this case

H(x) = Do(1 — =2 /R)""? O(R — |x]) 2)

where R= D/2 . Here 0(x) is Heaviside function where 8(x) =1
for x>0 and 6(x) =0, otherwise.

If the object has small transverse dimensions, then the
incident wave can be considered as a plane wave. The account of
a spherical wave front only leads to scaling of the longitudinal
and transverse coordinates but does not change the image
structure on the merits."® At some distance z from the object,
the phase contrast is determined by the integral that is the
convolution of the transmission function T(x) with the Fresnel
propagator

(i)tzl)l e (iﬂ g) 3)

We note that it is convenient to perform numerical
calculations for the integral with finite limits and for a relative
change in intensity, namely

P(x,z) =

A a1 (@
0

where

Alx)=1+ / dx' P(x — %/, 2)[T(x) — 1] (5)

In this case, the distance is counted from the middle of the
longitudinal thickness of the object, although the thickness itself
is not included in the result of the calculation.
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Computer simulations were performed with the FIMTIM (Fit
Micro-Tube Image) program.'* The program was originally
designed to simulate pink beam images by summing the images
for monochromatic harmonics with a weight corresponding to
the real spectrum measured by a detector. FIMTIM can estimate
the real spectrum, taking into account all the absorbers on the
beam path. The program also allows one to simulate a
monochromatic image. Below we illustrate how the program
can be used to fit images of tubular voids.

FIMTIM starts the simulation by reading the experimental
intensity profile measured across the void axis, then calculates
the theoretical profiles for some trial parameters of the cross-
section. The goal of the simulation is to find the transverse D and
longitudinal diameters D, using only one projection image. In
the search for the best match, the program automatically varies
the diameters and finds the sum y*(D, Do) of least squared
deviations on the certain set of points with the certain step using
the effective algorithm. To estimate the accuracy, FIMTIM
can draw a map of y*> —x%. as a function of D, D, near the
minimum point.

2.2. Experimental Section

The Pohang Light Source (PLS), Pohang city, Republic of Korea,
is operated with full electron energy of 3 GeV. PLS is housing
imaging beamlines at the bending magnet ports and the
biomedical-imaging beamline at a multipole wiggler port. Since
2013 phase contrast experiments have been performed on
the wiggler-beamline which is also dedicated to tomography and
topography techniques. The experiments presented in this paper
were carried out using the photon fluxes from a bending magnet
and from a wiggler at 6D and 6C beamlines, respectively. On the
bending-magnet beamline there were no optical components
between the source (having the size 160 (H)] x 60 (V)] wum?®) and
the specimen, located at a distance of 32 m from the source. The
large source-to-specimen distance L and the small source size in
the vertical direction S resulted in the lateral coherence length
L.=2/2a=21pm, where A =0.775 A is the wavelength for the
photon energy E=16keV, and a = S/L is the angular size of the
source as seen from a point in the specimen.

The pink beam spectrum was formed due to the presence of
absorbers on the beam path, which were the 2-mm-thick Be
window and the specimen. The latter was a SiC plate with a
thickness of ~500 pm. The detector placed behind the specimen
measured a well-pronounced spectrum maximum with an
effective full width at half height AE=11keV. The temporal
coherence was estimated as 1.2 A.

The specimens were cut out from the 6H-SiC crystal grown by
the sublimation method along the (1120) direction. In the a-face
growth (see, e.g., ref. [20]), micropipes, which represent hollow
cores of screw superdislocations, are not formed. Prior to
growth, a grooved relief (500 wm spacing, 50-80 wm width and
depth) was excised on the a-plane surface of the SiC seed with a
diamond saw. The seed surface was etched by molten KOH. The
relief was made for the purpose of controlling the density of
dislocations that propagated into the crystal from the seed. The
growth process was carried out in an Ag atmosphere under a
pressure of 0.01-0.07 bar at a temperature of 2100-2200 °C with
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a rate of 500 umh™~". The grown boule was sliced into (0001)
specimens further subjected to grinding and polishing. The
thickness of a specimen was ~50 pm. It was found that the boule
contained tubular microvoids. Unlike dislocated micropipes,
which usually propagated along the (0001) direction, these voids
were oriented mainly parallel to the (0001) plane, and they could
vary their cross-sections along with their orientation in space.

Figure 1a shows the image of the void registered in the far
field. We notice that the void orientation varies slightly. We note
that the 1D approach restores the proper diameters only if the
cross-section keeps the constant size within the segment longer
than 2r; along the void axis, where r; = (1z)'/? is the radius of the
first Fresnel zone. For 1 =0.775 A and z = 40 cm the diameter is
2r; =11.10 pm. In Figure la, noticeable changes along the void
axis occur in the segment much longer than this value. The
experimental intensity profiles were measured across the axis in
the regions indicated by arrows 1 and 2. The normalized
experimental curve, measured in region 1, is represented by
markers, and the simulated theoretical profile is shown by a solid
line in Figure 1b. The best agreement (> = 1.40 x 10~ *) between
the profiles was achieved for the diameters DV =4.77 um and
DYV = 3.99 pm.

Can one trust the result of the simulation? In order to estimate
the accuracy of the obtained parameters, the FIMTIM program
can draw the sum y*(D, Dy) of least squared dev1at10ns near the
minimum point as a function of D and D( Figure 1c shows
the black—white contrast map with black color for y*. =
1.39 x 10~ * and white color for y% = 1.49 x 10~* or more. One
can see that the region of small values of y* is not localized. This
result was theoretically explained by Kohn et al.'®! Provided that
the image of the microvoid is measured in the far field and,
unless the phase shift is less than unity, the detailed structure of
the void cross-section can not be revealed. For the void in
Figure 1a, the Fraunhofer diffraction condition is fulfilled, since
DW < 2r,. Therefore, the only parameter that can be obtained
from the image is the size of the cross-sectional area in region 1:

=7(D x Dp)/4=15 pm?.

In region 2, the center of the void image darkens, and the
transverse dimension decreases along its axis. The change in
contrast is caused by changes either in the size of the cross-
sectional area, in the cross-section shape, or in both parameters.
Here, the best fit (XZ =1.54 x 10_4) between the simulation
and the experiment is obtained for D®=2.62pm and
D(()z) = 2.82 pm. We notice that the cross-sectional area of the
void has changed in region 2: 0, =6 pm?

The obtained data were insufficient to explain the formation
of such voids. Nevertheless, the difference between our samples
and those described elsewhere®” should be taken into account.
The feature of our samples was the presence of artificial grooves.
We suppose that the voids are formed by the vacancy diffusion
and coagulation mechanism. When the free surfaces of the
grooves appear in the interface region of the growing crystal, the
vacancies are able to nucleate not only at the growth front, but
also at the faces of the grooves. At the same time, plastic
deformation, which occurs during growth, can make attractive
lattice sites, e.g., grain and subgrain boundaries, dislocation slip
bands, etc. acting as vacancy sinks. It was reported in ref. [20] that
crystals grown in the [1100] and [1120] directions contained
edge dislocations, stacking faults, and tilted subgrain boundaries
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equal to unity: Ag(x) = 1. On each iteration of a
loop with (N — 1) repetitions one calculates the
integral

I I I I AVH“I (x)
(b) (c) 424 F
13- =1+ / dx' P(x — %/, p)[An(%)T(x) — 1] (6)
I 4.1 b
@' ' where the function T(x) is described by the
> 1.1 = 404 b formulas (1) and (2). In the last iteration the
= o) parameter p in (6) is replaced by Z. Then
c 1.0
g 3.9 1 one calculates the square of the modulus of
£ 0.9 the function Ayn(x) and subtracts 1.
That is, the iterative method applies the
08 T T T T T 38 T T T T : : 1.
20 10 0 10 20 46 47 48 49 50 ideas of phase contrast only to a single void;
X, wm D, um and only for a single void is the change in the

Figure 1. a) Phase-contrast image of a tubular void in the bulk of 6H-SiC crystal. Multilayer
monochromator, E= 16 keV, z=40cm. Effective pixel size: 0.28 um. White arrows 1 and 2
indicate the levels at which the simulation is performed. b) The experimental (markers) and
theoretical profiles in the case of best coincidence (x*=1.40 x 10~%). c) A map showing the

sum x° of least squared deviations as a function of D and Dy at level 1.

located in a plane parallel to the growth direction. In our white-
beam topography observations, we detected subgrain boundaries
and dislocation slip bands located in the (0001) plane parallel to
the [1120] growth direction. The high growth temperature
facilitates the migration of vacancies to the sinks. Rough
estimate shows that the characteristic rate of the carbon vacancy
diffusion is ~1cmh™" at the temperature T=2300K, which is
much larger than the typical growth rate for our crystal.
Therefore, the vacancies seem to have enough time to coagulate
and to form the voids along the defective boundaries.

3. Computer Simulations of 1D Arrays of
Tubules in Dentin

Some materials (e.g., photonic crystals or dentin) contain many
voids spaced apart a distance comparable to their transverse
dimensions. In this case, the perturbation of the wave function
will occur over the entire specimen, whose length can be rather
large. The calculation method based on the summation of a
phase along an unchanged trajectory (known as the projection
approximation) may be inaccurate. It is necessary to take into
account the gradual change in the wave function after each void
at a distance between them. In order to verify the applicability of
the phase-contrast method to such materials, let us consider a
simplest model in which a chain of identical voids, spaced by a
distance of p, is parallel to the beam trajectory. Assume that the
cross section of a void is elliptical in shape with the diameters D,
and D, and the number of such voids is N. We are interested in
the image of such object at a variable distance Z from its end. In
the phase contrast method we use the same formulas (1)—(4) as
before, but instead of D, in (2) one must write DN and use a
distance z=Z+ p(N—1)/2.

We must compare the results of the calculation with a more
accurate method. The latter is the iterative method”'~** that
uses a variable wave function of radiation A, (x). Its initial value is
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complex phase on the beam path calculated.
As for the spacing between the voids, it is
estimated more accurately, according to the
Huygens—Fresnel principle. It is known that
the Fresnel propagator is almost equal to a
delta function at short distances. If the
Fresnel propagator is replaced with a delta
function, we at once obtain an analogue of the
first calculation method without taking into account half the
thickness of the specimen. However, even if the distance is
small, the Fresnel propagator is not quite equal to delta
function; and when the number N of voids is large enough, the
result of the iterative method should be somewhat different
from that of the phase-contrast method. The very fact that there
are differences in the results of the two methods means that the
phase-contrast method is inapplicable.

The calculations were performed by the two methods for
dentin material and the photon energy E=12keV. It was
assumed that Do = D =4 um and p = 10 pm. We have calculated
the complex refractive index of dentin taking into account that
~50% of its volume is occupied by calcium hydroxyapatite,
which has the chemical formula CasP;03H and the density
3.16 gcm >.** These data make it possible to determine both
electron density and the contribution to absorption coefficient.
Collagen fibrils consist of only light atoms and have a rather
complex structure. We believe that they have little effect on the
refractive index. The following values of the decrement of
refractive index § and the absorption coefficient f were utilized:
§=2.26x10"° B=3.62 x 10 °. Using the chemical composi-
tion and density, § and f can be calculated on the Internet.?”!
The above values were obtained with a more accurate computer
program.”®! The computations assumed a point SR source
and a detector resolution of 0.5 wm. The consideration of the
source size would lead to image averaging at large distances,
but we were interested in an ideal situation. The consideration
of the detector resolution allowed us to eliminate unobservable
fringes.

All our calculations employed the Fast Fourier Transforma-
tion (FFT) procedure to calculate the convolution of the Fresnel
propagator and the factor containing the transmission
function. First, we calculated a direct Fourier transform of
the factor, then we multiplied it by the Fourier image of the
propagator; and then we calculated the inverse Fourier
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transform. The computation was carried out on a set of
65536 =2"° points with 0.01 wm step.

It follows from the above analysis (made for different values of
the distance Z) that distinguishable changes in the shape of the
curves I;I(x) are observed only for numbers N > 100, and they
slowly increase with increasing N. At N=50, the curves
constructed by the two methods practically coincide. Thus one
can conclude that the phase-contrast method is quite applicable
for the number of voids along the beam of less than 100. At
N <100, the method gives a good accuracy. It can still be used
with lower accuracy at 100 < N < 200, but not at N> 200. Note
that the computation made by the iterative method requires
substantially more time.

4. Computer Simulations of 2D Arrays of
Tubules in Dentin

Dentin is structured with an array of fluid-containing channels
(called dentinal tubules) located in a complex substance.
Typically the array of tubules looks like a slightly disordered
2D lattice with a period of 10 pm, while the diameter of a tubule
is about 4 um. Figure 2 shows this structure together with the
coordinate axes. As a first approximation, we consider an
idealized model of 2D photonic crystal, which represents a
strictly periodic 2D system of tubules. One direction is parallel to
SR beam propagation direction, the other is normal to the plane
in which SR source has its minimum dimensions. As before, the
substance is homogeneous along tubules. Therefore, a detector
will capture a homogeneous distribution of intensity along
tubules.

In fact, in real dentin tubules are not quite parallel to each
other. However, it is sufficient if they are parallel within the
distance slightly more than the diameter of the first Fresnel zone
2r; = (12)'/%, in which case the change in the structure along the
axes of tubules can be neglected. The calculation of the 50 x 50
system of tubules separated by 10 wm spacing in both directions
was carried out at different distances from the specimen using
the phase-contrast method. The calculation parameters were the
same as in the previous section. The system had the transverse
and longitudinal dimension equal to 500 pm. The dimension of
the calculation region was equal to 655 wm.

Figure 3 (left panel) shows how the intensity varies in three
central periods of 30 wm, depending on the specimen-to-detector
distance from 0 to 50cm. The transverse dimension of the
pattern is =20 times smaller than the dimension of the
calculation region. It is interesting that the output wave
amplitude is no longer a constant. In the center of the tubules,
the amplitude increases by 1.55 times with respect to the points
between the tubules. That is, despite the fact that the change in
the phase of the wave is very large, there is also a strong
amplitude-contrast associated with absorption. In the central
part of the tubules, the phase change has a parabolic shape; and
the tubules resemble microlenses. The beams are locally focused
at the distance that is slightly less than 1cm, with a maximum
intensity value of 5.5 at the focuses. However, in order to better
represent the contrast in the entire range of intensities, the
values were trimmed from 0.36 (in the minimum) to 3. The
estimation of the focal length by the formula of a parabolic
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- Z
20 um X

Figure 2. Typical arrangement of dentinal tubules considered in
computer simulations. The z-axis lies along the beam, the x-axis is
perpendicular to the beam axis in the plane of high coherence of the
beam.

lens®”! gives the value F= R/2N§=0.88 cm. After focusing the
beams scatter and mix. At some distance interval from 12 to
20 cm maxima of relative intensity appear between the tubules.
With increasing distance, the intensity distribution becomes
more uniform, remaining periodic. At the distance of 49 cm, the

05 10 15 20 25 30
1 1 1 1 1 J
N

I/lo

. Wt
v N
& & t

- A

Figure 3. The dependence of the relative intensity of the system, which
models the dentin structure, on the distance z from the specimen. The
system includes 50 x 50 tubules of a circular cross-section with the
diameter of 4 wm, spaced apart the distance of 10 um. Only the central
part of the image, which has the size of 30 um (3 periods), is shown. Left
panel: the structure is a regular lattice. Right panel: the structure contains
a weak disorder. See text for details.
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maxima are formed again close to the centers of the tubules but
of a lower intensity. It should be noted that at times there is a
sharp dependence on the distance; that is, on a small distance
interval at some values of the distance, the intensity distribution
is rapidly rearranged. But there are also such distances at which
there are almost no changes. This behavior is difficult to
understand, and more research is needed.

It is of interest to model some disorder in the system. Let us
consider a system which has 50 periodic chains of tubules with
a period of p; =10 pm in the direction perpendicular to the
beam. The distances between the chains in the direction along
the beam are equal to p =10 pm; however, the centers of each
chain have been displaced in the transverse direction relative to
the common center randomly, according to the formula
Up1(0.5 — R), where R is a random number obtained by a
random number generator in the interval from 0 to 1. Such
distribution of tubules has one parameter U that can take the
values from 0 to 1. At U=0 we obtain an ideal lattice; at U=1
we obtain the spread of centers along the entire period. Since in
the phase contrast method the phase is summed over all layers
along the beam, then the periodicity of the distribution
remains; however, the profile of the complex phase inside the
period can be arbitrarily complicated. Such system of tubules
was generated once, and then it was used unchanged for
different distances.

The result of the calculation for U= 0.25 is shown in Figure 3
(right panel). It is seen that even a relatively weak disorder in the
system has dramatically changed the intensity distribution in the
region behind the focuses. In this case the phase profile is
slightly smeared. It deviates from a parabolic shape, however, not
strongly, and focusing yet occurs. Then, the maxima between the
tubules are quickly formed and, starting from a distance of 2 cm,
the intensity distribution does not at all resemble the case of the
ordered structure.

The offered interpretation does not address the Talbot theory
for the reasons explained below. It is known that after a
transmission in free space along the optical path at a distance
z+ z7, the periodic wave field of radiation becomes the same as
at a distance z, where zp = 2p?/A, p is the period of the wave field
in the transverse direction, and A is the wavelength.?® This effect
is called the Talbot effect. At the distance z + zy/2, the wave field
will also be the same, but shifted by p/2 in the transverse
direction. This means that if the initial wave field has peaks at
positions —p/2 and p/2, then they will appear at positions —p, 0, p
at the distance z + z7/2.

Later works (see, e.g., refs. [29,30]) have shown that peaks
arise as well at the distances z, = p?/An with the period of p/n
and the center at 0. This effect is called the fractional Talbot
effect. The effect is especially clear if the peaks have a constant
phase. If the phase of the wave field within the peaks is variable,
then the properties of the wave field transmission in free space
become more complex.>"

Our system has the Talbot period equal to zr =200 cm. This
distance is too long to use in imaging experiments. On the
other hand, our system is not completely periodic because its
width is only 50p. In addition, the peaks have a variable phase.
Therefore, the fractional Talbot effect can be seen approxi-
mately for n=2, 3 (Figure 3), but it is not observed for larger
values of n.
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We note that the fractional Talbot effect cannot distort
information about the system transverse period, because it takes
place in a small interval of z. Images are always measured at
several distances z, and the real period can be easily seen.

5. Conclusion

This investigation was an attempt to explain interference
patterns generated by arrays of tubules. The patterns were
simulated by using simplified models of dentin material
illuminated by coherent synchrotron light. For a single tubular
microvoid, the 1D phase-contrast method provides reliable
assessment of the cross-sectional area. When the tubule
diameters are only a few times smaller than the spacing
between them, a tubule array is considered as 2D object. The
wave function of radiation within such object is a variable.
The consideration of a variable wave function by means of the
iterative method shows that for a very thin specimen, the
calculation can be carried out by the 2D phase-contrast method
without loss of accuracy or information. Although the
simulations are accurate enough in this case, no easily
explainable patterns emerge from the calculations. One image
is not enough to obtain information about the entire structure.

Our computations are still quite far from reality. The problem
is too profound and requires further research. Yet, we tried to
find whether it is possible to determine a period in the lattice of
tubules. We can say with certainty that phase-contrast images
allow the determination of the period, which does not fade away
even after introducing some long-range disorder into the system
with short-range order.
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