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The article reports an accurate theory of X-ray coplanar multiple diffraction for

an experimental setup that consists of a generic synchrotron radiation (SR)

source, double-crystal monochromator (M) and slit (S). It is called for brevity

the theory of X-ray coplanar multiple SRMS diffractometry. The theory takes

into account the properties of synchrotron radiation as well as the features of

diffraction of radiation in the monochromator crystals and the slit. It is shown

that the angular and energy dependence (AED) of the sample reflectivity

registered by a detector has the form of a convolution of the AED in the case of

the monochromatic plane wave with the instrumental function which describes

the angular and energy spectrum of radiation incident on the sample crystal. It is

shown that such a scheme allows one to measure the rocking curves close to the

case of the monochromatic incident plane wave, but only using the high-order

reflections by monochromator crystals. The case of four-beam (220)(331)(111)

diffraction in Si is considered in detail.

1. Introduction

The phenomenon of X-ray monochromatic plane-wave

multiple diffraction in single crystals was predicted by Ewald

in 1917 (Authier, 2005; Chang, 2004; Pinsker, 1978). However,

a detailed study of this phenomenon only became possible

many years later. The reason for this is the rather complex

nature of this effect: the strong interaction of several plane

waves inside the crystal should be described by matrix algebra

without the possibility of obtaining an analytical solution in a

general case. Therefore computer simulations are necessary.

At the same time, the weak interaction of X-ray radiation

with matter is a reason why this effect occurs in very narrow

regions in angular and frequency domains. To observe plane-

wave multiple diffraction a strong angular collimation in two

directions and a strong monochromatization up to the values

of 10�6 are necessary. That is why for many years theoretical

and experimental investigations were performed indepen-

dently. For example, the effect of a strong decrease in the

absorption of a part of the X-ray radiation in the six-beam

case, which was predicted by Joko & Fukuhara (1967) and

discussed by Afanas’ev & Kohn (1977), has not been clearly

observed experimentally up to now.

The coincidence of theoretical and experimental results was

obtained recently in investigating the effect of total reflection

of the X-ray monochromatic plane wave in the forbidden

diffraction direction in the three-beam case (Kazimirov &

Kohn, 2010, 2011) and four-beam case (Kohn & Kazimirov,

2012). In these works many crystals with high-order reflections

were used to obtain a strongly monochromatic and collimated

beam of synchrotron radiation. Although an effect was

predicted theoretically 22 years before the experiment (Kohn,

ISSN 2053-2733

Received 25 May 2018

Accepted 5 September 2018

Edited by L. D. Marks, Northwestern University,

USA

Keywords: X-ray diffraction; silicon crystal;

multiple diffraction; synchrotron radiation; slit

diffraction.

# 2018 International Union of Crystallography

electronic reprint



1988a,b) it was impossible to perform an experimental study

earlier.

However, a wide spectrum of synchrotron radiation allows

one to use a simpler experimental setup if the coplanar case of

X-ray multiple diffraction is under consideration. Coplanar

multiple diffraction (CMD) occurs when a wavevector of the

incident monochromatic plane wave k0 and wavevectors of all

diffracted waves km ¼ k0 þ hm lie on the same plane and are

the radii of some circle in the plane of reciprocal space

(Chang, 2004). In this case, all atomic planes inside the crystal

which reflect a plane wave are normal to one plane which can

be determined by the unit vector n0 as the vector normal to

this plane. In other words, all the reciprocal-lattice vectors of

multiple diffraction hm lie on the same plane and make an

angle of 90� with n0.

It is evident that this is possible only for the well defined

energy E0 = h- !0 = h- cK of X-ray photons where K = jknj =

2�=�, h- = h=2�, h is the Planck constant, c is the light velocity,

� is the wavelength. Such an energy can be easily selected

from the synchrotron radiation spectrum. In this case the

intensity of diffracted beams depends weakly on the angular

deviation of the direction of the incident plane wave in the

plane normal to the plane of CMD and this dependence can be

neglected. Therefore a strong collimation only for one angle

inside the plane of CMD is necessary together with mono-

chromatization of radiation.

In this work we demonstrate that the experimental setup

shown in Fig. 1 may be successful in several cases of CMD.

This experimental setup is rather simple. It consists of a

generic synchrotron radiation (SR) source, double-crystal

monochromator (M) and slit (S) in the same plane normal to

the beam. The method exploring this experimental setup can

be called for brevity SRMS diffractometry. We assume that all

crystals have the form of a plane parallel plate.

Such a setup was used by Blagov et al. (2011) for studying

the coplanar X-ray three-beam diffraction in a TeO2 single

crystal using the Kurchatov Synchrotron Radiation Source

(Moscow). The experimental curves of angular dependence of

a weak, strongly asymmetric reflection were found to be much

wider than the theoretical plane-wave curves. However,

detailed analysis of the instrumental functions was not

performed. We note that some theoretical calculations of the

instrumental function in the diffractometry experiments were

made earlier (Boulle et al., 2002; Kaganer et al., 2001;

Mikhalychev et al., 2015; Rı́o & Dejus, 2011). However, an

accurate account of the diffraction of synchrotron radiation on

the slit has not been given before.

The setup shown in Fig. 1 makes a theoretical calculation

difficult because the X-ray diffraction on the slit has to be

considered in real space while the diffraction in the crystals

has to be considered in reciprocal space. Therefore, a transi-

tion from real space to reciprocal space and vice versa is

necessary. Another problem is that the source size and prop-

erties of the source radiation strongly influence the result. We

used the model of the synchrotron radiation source in which

transverse distribution in space of independent point mono-

chromatic radiators is considered.

The reason for choosing this model is the fact that the

observation time in a typical experiment is much longer than

the duration of radiation from individual electrons inside the

bunch. Therefore, the phase relations between such individual

flashes of radiation are absent. In this case one has to calculate

the intensity at the detector from the radiation of a point

monochromatic radiator. Then one has to perform a convo-

lution of this intensity distribution with transverse distribution

in space of the source intensity as well as with the radiation

spectrum function.

The case of four-beam (220, 331, 111) coplanar X-ray

diffraction in a Si single crystal was used as an example for

applying the developed theory. To the best of the author’s

knowledge, this case has not been investigated before. It is

shown that the use of high-order reflections in the mono-

chromator crystals allows one to observe the rocking curve for

a monochromatic incident plane wave.

2. An accurate theory of CMD in the SRMS
experimental setup

The direction of the electric field vector of SR is well deter-

mined and stays the same in the CMD experiments. Therefore

it is sufficient to consider the scalar wavefunction as the

amplitude of the electric field vector. It is known that the beam

of SR is well collimated, and it has small transverse sizes as

compared with the distance along the beam. In the middle part

of the transverse section of the beam the scalar wavefunction

of monochromatic radiation can be approximated as a sphe-

rical wave in paraxial approximation:

 ðx; y; z; !Þ ¼ expðiKz � i!tÞA0
0ðx; y; z; !Þ; ð1Þ

where a transverse part A0
0ðx; y; z; !Þ is described in free space

as

A0
0ðx; y; z; !Þ ¼ exp i�

x2 þ y2

�z

� �
: ð2Þ

Here � ¼ 2�c=!. The coordinate system is shown in Fig. 1. We

choose the z axis along the direction of the beam, the x axis in

the plane of CMD and the y axis as the normal to the plane of

CMD.
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Figure 1
A scheme of the SRMS experimental setup. SR is the synchrotron
radiation beam, M is the monochromator, S is the slit, C is the sample
crystal and D is the detector. The z axis is always along the beam, the x
axis is normal to the beam in the plane of CMD and the y axis is normal to
the plane of CMD.
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We consider the frequency ! which is close to the frequency

!0 at which CMD occurs. In this case the crystals and the slit

influence only the x dependence of the function A0ðx; y; z; !Þ
whereas the y dependence of this function stays the same in

the form of the phase factor. Therefore the y dependence of

the intensity is absent, and the y coordinate can be excluded

from further analysis. Function (1) is written for the point

source at x ¼ 0. If the point radiator in the SR source trans-

verse section has a coordinate xs along the x axis, then x has to

be replaced by x � xs in function (2).

Below we omit the z argument because we will consider

definite distances along the beam and replace ! by q! as a

relative deviation of the frequency from a definite value. We

choose the base trajectory with the beginning at xs. It goes

along the z axis up to the surface of the first crystal of the

monochromator. Then it is reflected by the angle 2�B for the

frequency !1 which is determined by the angular position of

the monochromator, and it goes further up to the surface of

the second crystal of the monochromator. Then it is reflected

once again by the same angle 2�B but in the opposite direction,

and it goes along the z axis up to a slit (see Fig. 1).

Because of the weak interaction of X-ray radiation with

matter it is sufficient to consider small deviations in the

directions of plane-wave components and small shifts of

frequency from the value !1. In front of the slit we can write

the transverse part of the radiation wavefunction as

A0
0ðx; q!Þ ¼

Z
dq

2�
expðiqxÞP2

Mðq þ C1q!ÞPðq; l0Þ: ð3Þ

Here q ¼ jqj, the vector q being normal to the unit vector e0

along the z axis. It describes the angular deviation of the

plane-wave component with the wavevectors k = e0K þ q in

an integral representation of the wavefunction [see equation

(1)] over plane waves. If the angular position of the mono-

chromator corresponds to the frequency !1 then e0K1 þ h =

ehK1 where K1 = !1=c, eh is the unit vector along the base

trajectory between the crystals, and h is the reciprocal-lattice

vector for a reflection in the first monochromator (FM)

crystal. We assume that a scalar product qh has a negative

value.

Then we can write K ¼ K1ð1 þ�!=!1Þ and consider

�!=!1 as a small value because the experimental setup

restricts the possible values of �! ¼ !� !1. On the other

hand, the !1 can have an arbitrary value inside the wide SR

spectrum. The phase factor expðiKzÞ does not influence the

intensity and may be excluded from our calculations. Below

we will write �!=!1 ¼ �!, where �! can be called an effective

angle and we will use q! ¼ K1�! ¼ �!=c. Thus we replace the

frequency deviation by the angular deviation or wavenumber

deviation.

The reflected plane wave due to diffraction in the FM

crystal has a wavevector kh ¼ ehK1 þ qþ e0q! þ Cnc, where

nc is the unit vector. It is normal to the FM crystal surface and

directed inside the crystal. The coefficient C is determined

from the condition jkhj ¼ K. We note that in the case of

symmetrical reflection the direction of nc is opposite the

direction of h. The additional term Cnc appears due to

refraction at the crystal surface.

Inside the crystal the wavevector is k0h ¼ e0K þ hþ q, and

jk0hj ¼ Kð1 þ �=2Þ where

� ¼ ðk0hÞ2 � K2

K2
¼ 2

ðhqÞ þ ðhe0Þq!
K2

: ð4Þ

Here we use the equation jhj2 ¼ �2ðhe0ÞK1. The parameter �
describes deviation from the Bragg condition. It is small

because q and q! are small values and we take into account

only linear terms in calculations. We note that the reflection

amplitude PM ¼ Eh=E0 of the plane wave depends just on this

parameter (Authier, 2005). Here E0 and Eh are the electric

field amplitudes for the incident and reflected plane waves,

respectively.

In estimating � within our approximation we can replace K

by K1, h ¼ 2K1 sin �B, the angle between h and q is equal to

�B þ �, the angle between h and e0 is equal to �B þ �=2 and

� ¼ �2 sinð2�BÞðq þ C1q!ÞK�1
1 ;C1 ¼ tan �B: ð5Þ

Therefore � is proportional to ðq þ C1q!Þ and we write this

value in equation (3) as the argument of the reflection

amplitude. We write the second degree because of the fact that

two crystals reflect the plane wave similarly and restore the

initial wavevector k in the twice-reflected wave. The index 1 in

C1 means that the Bragg angle corresponds to the mono-

chromator.

The function

Pðq; zÞ ¼ exp �i
�z

4�
q2

� �
ð6Þ

is the Fourier image of the Fresnel propagator as the trans-

verse part of the spherical wave in the paraxial approximation

[see, for example, Kohn (2012)]. We note that equation (3) is

equivalent to four convolutions which describe five processes:

(i) propagation from the point source to the FM crystal, (ii)

reflection by the FM crystal, (iii) propagation between the

crystals, (iv) reflection by the second crystal, (v) propagation

from the second crystal to the slit. The Fourier transformation

allows us to simplify the problem. It is evident that the

distance l0 in equation (3) is equal to the length of the base

trajectory from the point source to the slit.

We note that the Fresnel propagator has to depend on the

real photon energy. However, a small relative deviation of the

frequency can be compensated by a small relative deviation of

the distance. It is known that the result depends weakly on the

small relative change of the distance. Therefore, we can use

the frequency !1 instead of !. As a result, a strong depen-

dence on the frequency is effectively determined by the

parameter q!.

The wavefunction behind the slit is equal to

A0
1ðx; q!; xsÞ ¼ A0

0ðx; q!ÞTðx þ xsÞ; TðxÞ ¼ �ðx0 � xj jÞ: ð7Þ
Here �ðxÞ is the Heaviside function which equals unity for a

positive argument and zero for a negative argument, x0 ¼ d=2,

d is the slit width. We took into account the fact that the slit

position is independent of the base trajectory and we deter-
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mine this position for xs ¼ 0. Therefore, for any value of xs we

have the same function A0
0ðx; q!Þ but we need to take into

account the position of the slit relative to the point source as

�xs. We note that rotating the monochromator with the aim of

slightly changing the frequency !1 can lead to an additional

shift of the base trajectory relative to the slit. However this

shift is very small and can be neglected.

To describe CMD in the sample crystal we need to represent

the wavefunction as a superposition of plane waves,

A0
1ðx; q!; xsÞ ¼

Z
dq

2�
expðiqxÞA1ðq; q!; xsÞ; ð8Þ

where

A1ðq; q!; xsÞ ¼
R

dx expð�iqxÞA0
1ðx; q!; xsÞ: ð9Þ

Then we can consider all scattering processes: (i) propagation

from the slit to the sample crystal, (ii) reflection by the sample

crystal, (iii) propagation from the sample crystals to the

detector, as a product of scattering amplitudes.

Finally, the wavefunction at the detector can be written as

A0
2ðxÞ ¼

Z
dq

2�
expðiqxbÞPðqb; l2ÞPCðqr � q; q1!Þ

� Pðq; l1ÞA1ðq; q!; xsÞ: ð10Þ
Here l1 is the distance between the slit and the sample crystal,

l2 is the crystal-to-detector distance, PC is the reflection

amplitude for a specific reciprocal-lattice vector of the CMD.

Here we took into account three new peculiarities of the

sample reflection.

The first one is that the sample crystal can have two posi-

tions which can be called nondispersive and dispersive. In the

nondispersive case, the beam reflected by the sample crystal

has a direction close to the direction of the beam after the FM

crystal reflection. The angle between these beams is equal to

2ð�B2 � �B1Þ. In the dispersive case the angle is 2ð�B2 þ �B1Þ.
Both cases are specified by the sign in front of q. In this work

we assume the first case.

The second peculiarity is that the sample crystal can be

rotated independently of the monochromator. We take this

into account by means of representing the reciprocal-lattice

vector as h ¼ h0 þ h1 where h0 is the value corresponding to

the optimum crystal angular position and h1 is a small vector

which is normal to h0. The rotation angle is equal to

�r ¼ h1=h0. We note that it is useful to count the frequency !
in the CMD calculations relative to the value !0 when all

parameters of deviation from the Bragg condition are met

simultaneously. Then ðe0K0 þ h0Þ2 = K2
0, K = K0 þ q1!, where

q1! = q1 þ q!, q1 = ð!1 � !0Þ=c and

� ¼ K�2
0 ½ðe0K0 þ h0 þ h1 þ qþ e0q1!Þ2 � K2�

¼ 2K�2
0 ½ðh0qÞ þ ðh0e0Þq1! þ ðh1e0ÞK0�: ð11Þ

Now h0 ¼ 2K0 sin �B, the angle between h0 and q is equal to

�B þ �, the angle between h0 and e0 is equal to �B þ �=2, and

we choose the angle between h1 and e0 as �B þ �.

As a result

� ¼ �2 sinð2�BÞðq þ qr þ C2q1!ÞK�1
0 ; C2 ¼ tan �B: ð12Þ

Here qr ¼ K0�r. The index 2 in C2 means that the Bragg angle

corresponds to the sample reflection. We note that the plus

sign in front of qr is a consequence of our choice of the

rotation direction when the angle between the incident wave

and the reflecting atomic planes increases due to rotation. In

the case of multiple diffraction we have several reflections

simultaneously with different values of the Bragg angle.

Therefore, the reflection amplitude PCð; Þ depends on two

arguments q þ qr and q1! separately.

The third peculiarity is asymmetry of the sample reflection,

i.e. the angle between nc and h0 is different from 180�. In this

case the crystal changes both the direction of the reflected

beam and its angular divergence (Authier, 2005). If the

angular deviation of the incident beam is � ¼ q=K0, then for

the reflected beam the angular deviation from the base

trajectory is �0 ¼ qb=K0, where b ¼ sin �0= sin �h and �0, �h are

the angles between the crystal surface and the unit vectors e0,

eh (Authier, 2005). We note that �0 þ �h ¼ 2�B. In the

symmetrical case �0 ¼ �h ¼ �B.

In the method of SRMS diffractometry one measures the

integral intensity of radiation at the detector as a function of

the rotation angle �r and the angle �1 ¼ q1=K0 which is

determined by the angular position of the monochromator.

The integral intensity for the point monochromatic radiator is

equal to

S1ðpÞ ¼
R

dx A0
2ðxÞ

�� ��2
; p ¼ �r; �1; xs; �!: ð13Þ

We substitute equation (10) in equation (13) and calculate the

integral which gives the following result:

S1ðpÞ ¼ b�1

Z
dq

2�
PCðqr þ q; q1!Þ
�� ��2

A1ðq; q!; xsÞ
�� ��2

: ð14Þ

Equation (14) is the well known Parseval rule which is

formulated as the integral intensities in real and reciprocal

spaces are equal to each other. The factor b�1 is a consequence

of the fact that variables x and q are not fully mutual. Since the

Fresnel propagator has a unit modulus the distances l1 and l2

do not influence the integral intensity. It is a consequence of

the energy conservation law.

The experimentally measured value is calculated as

Sð�r; �1Þ ¼
R

dxsGBðxsÞ
R

d�!S1ð�r; �1; xs; �!Þ; ð15Þ
where GBðxsÞ is the intensity distribution on the source. This

function is usually chosen as the Gaussian function:

GBðxsÞ ¼ ð2�Þ�1=2��1
x expð�x2

s=2�2
xÞ: ð16Þ

We note that the experimental data are obtained point by

point during rotation of the sample crystal and the mono-

chromator crystals. It is convenient to consider the curve of �r

dependence for several reflections at the fixed value of �1.

Such curves are called CDR (curve of diffraction reflection).

A set of such curves can be obtained by changing �1.

Computer simulations can be performed similarly as a

convolution of the monochromatic plane-wave multiple
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diffraction data and the instrumental function which can be

calculated separately.

3. Instrumental function

We substitute equation (14) into equation (15) and change the

order of integration as well as replace variable wavenumbers

by angles as � ¼ q=K0 and so on. We will also omit all constant

multipliers general for all reflections because we are interested

only in relative values. Under these conditions we have

Sð�r; �1Þ /
R

d� d�!Hð�; �!ÞGCð�r þ �; �1 þ �!Þ; ð17Þ

where

GCð�; �!Þ ¼ b�1 PCð�; �!Þ
�� ��2 ð18Þ

and

Hð�; �!Þ ¼
R

dxsGBðxsÞ A1ð�; �!; xsÞ
�� ��2

: ð19Þ

Equation (17) consists of a double integral over the angular

and frequency variables of a product of two functions. One of

them GCð�; �!Þ describes the intensity of the reflected beam in

the case of CMD of the monochromatic plane wave with given

angular and frequency deviations from the values which

satisfy all Bragg conditions for the CMD under consideration.

The second function Hð�; �!Þ does not describe the CMD. It

describes the weights of various angular and frequency

deviations in the effective incident beam because the incident

radiation is not a monochromatic plane wave. This function is

usually called the instrumental function.

By means of rotating the sample and monochromator, we

have the possibility of choosing mean values of angle and

frequency of the incident wave which influence the CMD and

thus obtaining some effective angular and frequency profiles.

These profiles will be close to the results of the theory of the

monochromatic plane wave if the instrumental function equals

zero out of the small area near the zero point in the two-

dimensional area of arguments. Knowledge of the instru-

mental function allows us to make accurate computer simu-

lations of the experimental data and to predict the difference

from the results of the theory of the monochromatic plane

wave.

The function GCð�; �!Þ can be calculated by means of the

methods of X-ray monochromatic plane-wave multiple

diffraction theory, and the CMD is a particular case. We use

the computer program which was described by Kohn (1979)

and was used in the works of Kazimirov & Kohn (2010, 2011)

and Kohn & Kazimirov (2012). The function Hð�; �!Þ depends

completely on the experimental setup, and has not been

considered up to now. It is the main result of this work.

We substitute equations (3), (6), (7) into equation (9) and

make a shift of the origin in the integral over x. As a result, we

obtain

A1ðq; q!; xsÞ ¼
Z

dxTðxÞ
Z

dq0

2�
P2

Mðq0 þ C1q!Þ

� exp � i

2
ðrq0Þ2 þ iðq0 � qÞðx � xsÞ

� �
; ð20Þ

where r ¼ ðl0=K0Þ1=2. The exponential is a strongly oscillating

function. We can estimate the integral over q0 approximately

by means of the stationary phase method (SPM, Jeffreys &

Swirles, 1972). In the point q0 ¼ q0
p ¼ qx � qs the first deri-

vative of the phase is equal to zero, where

qx ¼
x

r2
¼ K0�0; qs ¼

xs

r2
¼ K0�s: ð21Þ

According to the SPM approximation we replace the function

P2
M by its value at the point q0

p, and calculate accurately the

integral from the exponential. We omit the multipliers which

do not influence the intensity and shape of the curve and write

the result in the form

A1ðq; q!; xsÞ /
Z

dxTðxÞP2
Mðqx � qs þ C1q!Þ

� exp i
x2

2r2
� iðq þ qsÞx

� �
: ð22Þ

One can see that the integral depends effectively on two

independent arguments ðC1q! � qsÞ and ðq þ qsÞ. If the inte-

gral is known for qs ¼ 0 as the function of two arguments C1q!
and q, then the values of A1 for nonzero values of qs can be

obtained by shifting the first argument down and the second

argument up. Let us consider the value qs ¼ 0 and use the

function of new angular variables,

Bð�; �0!Þ ¼
R

dx expð�iqxÞFðxÞ; ð23Þ
where

FðxÞ ¼ P2
Mð�0 þ �0!Þ exp iK0

x2

2l0

� �
TðxÞ: ð24Þ

Here �0! ¼ C1�!. We note that the reflection amplitude is

calculated usually as a function of the angular variable. The

angle �0 ¼ x=l0 has a simple physical meaning. It is an angle

between the line from the centre of the source to the current

point inside the slit and the base trajectory.

The algorithm for calculating the function Bð�; �0!Þ is rather

simple. The function P2
Mð�0Þ can be calculated separately on

the set of points and then interpolated. The parameter �0!
influences only this function while the � dependence is

calculated by means of a fast Fourier transform procedure. We

are interested in the square modulus of this function. The

integral (19) is calculated by means of interpolating the matrix

jBð�; �0!Þj2 along the diagonal from top-left to bottom-right

corners and integrating the product of this function and the

GBð�sÞ. Finally, transformation from the variable �0! to �! can

be obtained by the interpolation procedure.

4. CMD (220, 331, 111) in Si

As an example of applying the theory we consider the case of

four-beam (220, 331, 111) coplanar X-ray diffraction in a Si
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single crystal. The coplanar case exists for the photon energy

E = 8.6182 keV. The directions of the incident (000) wave-

vector and the diffracted wavevectors are shown in Fig. 2(a).

We assume that the crystal is very thick; therefore only

reflected beams (220) and (331) are of interest and can be

measured in the experiment.

The function GCð�; �!Þ for each of these two reflections is

calculated by means of the standard computer program which

was used in the work of Kohn & Kazimirov (2012) and was

elaborated according to the theory proposed by Kohn (1979).

The general program can be used in the particular case of

coplanar diffraction. Therefore,

Gmsð�; �!Þ ¼
P

s0

P
j

B
ðjÞ
ms0Csj

�����
�����

2

ð25Þ

where m is the index of reflection, s is the index of polarization

of the incident beam, BðjÞ
ms is the jth complex eigenvector of the

dynamical scattering matrix,P
ns0

gss0
mnð�; �!ÞBðjÞ

ms0 ¼ "jB
ðjÞ
ms; ð26Þ

where

gss0
mnð�; �!Þ ¼

K�mn

�1=2
m �1=2

n

ðemsens0 Þ � K�m	
ss0
mn: ð27Þ

Here �mn is the Fourier image of the susceptibility of the

crystal on the reciprocal-lattice vector hm � hn, �m is the

cosine of the angle between the direction of the mth beam and

the internal normal to the entrance surface of the crystal plate,

ems are the unit polarization vectors for the beam m, 	ss0
mn is the

Kroneker’s symbol, and

�m ¼ �2 sinð2�BmÞ½� þ tanð�BmÞ�!� ð28Þ
are the parameters of deviation from the two-beam Bragg

conditions for the mth beam [see equation (12)]. The two-

beam cases are realized on the lines parallel to the lines

�m ¼ 0 if the point ð�; �!Þ is far from the central point (0, 0) on

the plane of two variables. Some shift takes place due to

dynamical phenomena.

The coefficients Csj are the solution of the set of equations

P
j

B
ðjÞ
ms0Cs0 j ¼ 	ss0

m0; ð29Þ

where only part of the eigensolutions with Im("jÞ> 0 is taken

into account, and index m runs only over the beams with

�m > 0.

Fig. 2(b) shows the lines of two-beam diffraction inside the

rectangular area in which results of accurate calculation of

diffracted (220) and (331) reflectivities are shown in Fig. 3 as a

colour map. We consider the case of the �-polarized incident

beam with a direction normal to the scattering plane which is a

vertical plane for which the source has a minimum size. The

same polarization state remains for all diffracted waves.

It is known that the curve of angular or energy dependence

of reflectivity in the case of two-beam diffraction has a shape

with a wide maximum like a plateau. Sometimes such a curve

is called the Darwin table (Ignatovich et al., 1996). In the plane

ð�!; �Þ the reflectivity is close to unity inside the stripe of some

width. One of the effects of multiple diffraction consists of

changing the width of this stripe near the multiple diffraction

point of the intersection of two beamlines.

This effect was first considered by Høier & Marthinsen

(1983) and was explained as a renormalization of the kine-

matical diffraction parameters due to a process of the second-

order scattering from the incident beam to the other beam and

then from the other beam to the beam under consideration.

The effect is asymmetric, i.e. the width becomes wider on one

side and narrower on the other side. In Fig. 3 this effect is

clearly seen for the (331) beam.

Another effect is a weak excitement of the reflectivity in the

area outside the region of the two-beam stripe, but inside the

two-beam stripe of the other beam. Inside the area of strong

multiple diffraction the reflectivity can be greatly altered and

the processes are not simple. For example, the results of
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Figure 3
The reflectivity distribution in the plane (�!; �) for the (220) reflected
beam (a) and (331) reflected beam (b). The axes are as shown in Fig. 2.

Figure 2
(a) Directions of the incident (000) and reflected wavevectors, and the
crystal surface is shown by a thick horizontal line; (b) the area in the
(�!; �) plane for the images in Fig. 3, and the lines of two-beam
diffraction.
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calculation show that the (331) beam is not reflected in this

area while the area of (220) reflectivity has sharp boundaries.

It is impossible to observe the results shown in Fig. 3 in an

experiment because the experimental setup allows one to see

only a convolution of these distributions with the instrumental

function. Let us consider first the parameters of the Kurchatov

Synchrotron Radiation Source (KSRS) in Moscow. Then �x =

54 mm, l0 = 13 m, x0 = 50 mm. Very often the monochromator is

made from Si and it is used with a (111) reflection.

The results of calculation of the instrumental function for

the parameters listed above are shown in Fig. 4(a) in the same

units as in Fig. 3. The colour map is also the same but the

function is normalized to the unit area. By means of rotating

the sample crystal we can calculate the rocking curves, i.e. the

�r dependence of reflectivity for various values of �1. The

calculation is performed according to equation (17).

The main result of calculation is shown in Figs. 4(b), 4(c)

and 4(d) for �1 = 140, 0 and �140 mrad, respectively. The

curves 1 (black) and 3 (blue) have to be observed experi-

mentally in the beams (220) and (331), respectively. The

instrumental function was taken into account in calculation of

these curves. Since these curves are wider and smaller than the

rocking curve for a monochromatic plane wave we show them

with a height that is twice that of the real height.

For the sake of comparison we show the plane-wave rocking

curves 2 (red) and 4 (green) from the data of Fig. 3, i.e. the

pure profiles without a convolution. The main aim of the

multiple diffraction study is to observe just these curves. Our

calculations, made according to the developed theory, show

that it is impossible in the considered case because the

convolution kills the fine details of profiles and makes the

curves wider and smoother.

Fig. 4(a) shows that the width of the area of the instru-

mental function (AIF) along the frequency axis �! is much

larger than along the � axis. This peculiarity is the main

disadvantage. It is easy to understand from equations (23),

(24) that this width is approximately equal to the width of the

Darwin table of the monochromator reflectivity along the �!
axis.

It is known that the width of the Darwin table along the �
axis is equal to 2j�hj sin�1ð2�BÞ (Authier, 2005). However, it is

tan�1ð�BÞ times wider along the �! axis. In our case j�hj =

7.03 mrad, �B = 13.26�, and we obtain an estimate of 133.5 mrad

for the width of the AIF along the �! axis. Now we understand

that we can significantly improve the monochromaticity of the

radiation incident on the sample if we use the higher orders of

reflection (333) or (444).

The same estimates give the values j�hj = 4.05 mrad, �B =

43.49� for the (333) reflection, and the widths of Darwin tables

of 8.11 and 8.55 mrad along the � and �! axes, respectively. We

have performed an accurate calculation for this case and

found that the AIF has the shape of a rectangular area as a

backwards-sloping diagonal (from top-left to bottom-right)

inside a square of 30 mrad side size. The width of this diagonal

is about 8 mrad. The additional increase in the AIF size occurs

due to the source size and integration in equation (19).

Nevertheless, the sizes of the AIF in this case are sufficiently

small and we obtain curves that are very close to the curves 2

and 4 in Fig. 4. The use of the reflection (444) allows one to

improve the monochromaticity further. In this case j�hj =

4.19 mrad, �B = 66.59�. We have performed an accurate

calculation and found that the AIF looks like a backwards-

sloping diagonal inside a rectangular area of 28 mrad height

and 12 mrad width. The coincidence with the rocking curves

for a monochromatic plane wave improves.

The size of the slit of 100 mm and smaller does not influence

significantly the AIF. The smaller size will decrease the

intensity of radiation at the detector. The larger size will

increase the vertical size along the � axis.

Let us estimate the AIF for the typical parameters of the

ESRF (Grenoble, France). In this case �x = 21 mm, l0 = 50 m,

and we obtain very good collimation by means of a setup

consisting of the source size and the slit. However, with the

(111) reflection the incident radiation will not be monochro-

matic. The width of the AIF along the �! axis will be the same

as in the above considered case. Therefore the use of high-

order reflections is necessary.

5. Conclusion

The aim of our work was to show that the effect of coplanar

multiple diffraction can be easily investigated using a

synchrotron radiation source because it is easy to select the

necessary photon energy from the very wide spectrum. In this

study a rather simple experimental setup was used which

consists of the double-crystal monochromator and a slit of a

reasonable size. We developed the theory which allows one to
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Figure 4
(a) The instrumental function (IF) Hð�!; �Þ for the case of the Kurchatov
SR source, 100 mm slit size and the Si (111) monochromator as the colour
map. The colour scale is the same as in Fig. 3, but the function is
normalized on the unit area. (b) The �r angular dependence of reflected
beam intensities for the �1 = 140 mrad; curve 1 (black) is for the (220)
beam taking into account a convolution, curve 2 (red) is for the (220)
curve on its own (i.e. without a convolution), curves 3 (blue) and 4 (green)
are the same for the (331) beam. (c) and (d) are the same for �1 = 0 and
�140 mrad, respectively. In reality, curves 1 and 3 have a height which is
half that shown in the figure. We increase the height to make the curve
more visible.
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simulate the experimental rocking curves. The theory takes

into account all parameters of the experimental setup such as

the source size, the slit size and the monochromator.

We have shown that the rocking curves close to the curves

of the theory of the monochromatic plane wave can be

obtained even with an SR source of relatively large angular

size like the Kurchatov SR source (Moscow). However, it is

necessary to use high-order reflections in the monochromator

crystals. The same rule has to be fulfilled for a third-generation

SR source like the ESRF (Grenoble). The coplanar multiple

diffraction is simpler than the general case of multiple

diffraction because it takes place inside the plane. On the

other hand, high sensitivity to the energy of radiation simul-

taneously with the angular dependence opens new possibilities

to study the structure of solid matter.
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