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Semi-analytical theory of a long set of X-ray compound refractive lenses (CRLs)

based on recurrence relations is developed further. The geometrical aperture,

angular divergence of incident radiation and source size were accurately taken

into account. Using this theory it is possible to calculate the width of the rocking

curve of a long (40.7 cm) Be CRL which coincides with experimental data

obtained earlier. By this approach the transverse coherence length for the X-ray

beam after passing a set of CRLs of arbitrary complexity has been estimated. It

is shown that at the focus this coherence length is equal to a diffraction-limited

beam size (beam size in the case of a point source) and has minimal difference

with the real beam size.

1. Introduction

X-ray refractive optics were applied for the first time in 1996

(Snigirev et al., 1996), a hundred years after the discovery of

X-rays. The reason for this delay was the fact that hard X-ray

radiation interacts weakly with matter. The index of refraction

deviates from unity with a value of 10�6 or smaller. Moreover,

the X-ray radiation is absorbed by all materials. It is known

that the absorption of X-rays is not strong, and X-rays are

used for studying the internal structure of objects. However,

this is a severe disadvantage for X-ray refractive optics.

The situation changed in the mid-1990s when third-

generation synchrotron radiation (SR) sources became avail-

able. These sources generate intensive beams of radiation with

photon energy in the range 6–120 keV (wavelength of 0.2–

0.01 nm). Today many sources of this kind are under opera-

tion. Nevertheless, the first three, namely ESRF (European

Synchrotron Radiation Facility) in France, APS (Advanced

Photon Source) in USA, and SPring-8 (Super Photon ring) in

Japan, allowed many results about the interaction of X-rays

with matter to be obtained. Of the new sources, PETRA III in

Hamburg, Germany, and X-ray free-electron lasers (XFELs)

in general should be noted.

It is important that such sources have undulators with a very

small transverse emittance, "= ws�0, where ws is the transverse

size of the source and �0 is the angular divergence of the beam.

As has already been pointed out (ESRF-EBS, 2017), the best

values for the undulator radiation at a photon energy of

10 keV are assumed to be ws = 5 mm and �0 = 6 mrad in the

vertical plane. Correspondingly, the emittance has a value of

the order of " = 30 pm rad. A typical source-to-object distance

under investigation is 50 m. In this case the transverse size of

the free X-ray beam at the object is less than 1 mm. Therefore

the relatively small aperture in X-ray refractive lenses

becomes comparable with the size of the beam.
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It is very useful that the index of refraction for X-rays is less

than unity, i.e. the phase speed of radiation in matter is larger

than the speed of light. Therefore focusing lenses have a bi-

concave surface, and the thickness profile of matter has a

minimum value in the middle of the aperture. As a result, the

decrease in the radiation intensity in the aperture centre due

to absorption is weak. Let us consider the complex refractive

index n = 1 � � + i�. It was shown by Kohn (2012) that the

effectiveness of a lens with a sufficiently large aperture is

defined by the parameter � = �/�.

Nevertheless, radiation is absorbed by thick parts of the

aperture, and the lens is characterized by an effective aper-

ture, while the focal length is equal to f = R/2� for a parallel

incident beam and a bi-concave parabolic lens with the

curvature radius R at the apex. For a one-dimensional lens the

relative intensity of the beam at the focus is equal to ��1, while

the beam transverse size is � times smaller than the effective

aperture.

That is why one has to choose materials for an X-ray lens

for which � has a small value. For the lightest metal Li, � has

the minimum value, but Li is unstable in air and is not widely

used. In addition, Li lenses are of poor quality (Pereira et al.,

2004). However, Be lenses can be easily manufactured and

used (Schroer et al., 2002); today such lenses are produced by

B. Lengeler from the Aachen University in Germany.

Let A be the geometrical aperture of a lens (see Fig. 1). The

most interesting pairs of parameters (R, A) for the created Be

lenses are as follows (in micrometres): (50, 450), (100, 632),

(200, 894), as reported by Lengeler (2010). Since the focal

length for one such lens is very large, in real experiments a

compound refractive lens (CRL) is used. It consists of an array

of elements that are positioned in a holder that provides their

correct position relative to the beam.

We note that CRLs of other low-Z materials like Al and

polymers have been produced as well and used in experiments

(see, for example, Snigirev et al., 1998; Ohishi et al., 2001). A

CRL made from N elements has a focal length f = R/2N� in the

thin-lens approximation. In spite of the large length of a CRL

(much larger than the aperture size), the CRL can be

considered as a thin lens with an effective curvature radius

R0 = R/N, if the focal length is several times larger than the

CRL length along the beam (Kohn, 2003). Today, Be CRLs are

widely used for both focusing and imaging. They are basic

elements of a high-resolution X-ray microscope (Bosak et al.,

2010; Snigireva et al., 2011), allowing photonic crystals to be

imaged with a resolution of <50 nm.

However, it is easy to create a CRL of a length larger than

the focal length in the thin-lens approximation. The theory for

such a CRL was first developed by Kohn (2002, 2003) under

the assumption that the elements of the CRL are packed

closely. Such an assumption allows the development of an

analytical expression for a propagator of the long CRL as a

function which describes the wavefield at the exit surface of

the CRL for a point source at the entrance surface. Later the

semi-analytical theory was developed (Kohn, 2009a,b, 2012)

for a long CRL system which is valid for arbitrary configura-

tion of CRLs in space.

This work presents a further development of that approach.

There are three points which have been improved. The first

point is the angular divergence of the incident beam. The

second point is the problem of accounting for the geometrical

aperture of a CRL. The third point is an accurate account of

the source size. In this paper two new results are presented.

The first result is that the semi-analytical theory allows the full

width at half-maximum (FWHM) of the rocking curve of a

CRL to be calculated which coincides with the experimental

results obtained in the work of Snigireva et al. (2004). The

second result is the possibility to calculate coherence prop-

erties of the beam behind the long system of CRLs at any

distance from the CRL. In both cases the calculations are

simple and quick and they are performed using an online

computer program (Kohn, 2018).

2. General equations

Let us consider an experimental setup which includes a set of

CRLs with arbitrary distances between them (see Fig. 2). The

CRLs are installed in a beam path along the z-axis. The full

set-up is shown in Fig. 3(a). SR from the source becomes

monochromatic with good accuracy by means of a mono-

chromator (not shown). The monochromator does not change

the direction of the X-rays. The time of observation is much

longer than the duration of the X-ray pulses. Under these

conditions it is necessary to consider as coherent only mono-

chromatic harmonics of the radiation (Afanas’ev & Kon,

1977). In a first step we calculate the intensity of the mono-

chromatic radiation at the detector. In a second step this

intensity has to be integrated over frequency with a radiation

spectrum as a weight function to take into account poly-

chromaticity.

We note that this is not the case for SR because the

radiation spectrum after the monochromator is very narrow

and the SR can be considered as monochromatic. In the case

of XFELs the problem of polychromaticity was considered by

Kohn (2012).
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Figure 1
Parameters of one chip of the CRL.

Figure 2
Scheme of several CRLs in the beam path.
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We can neglect the monochromator because it does not

influence the intensity distribution of monochromatic radia-

tion at the detector. For this reason each point at the source

transverse section has to be considered independently. In a

first step we consider the completely coherent point source

and use Maxwell’s equation for calculating the electric field

of radiation during its propagation from the source to the

detector through an optical system. In a second step the

intensity of radiation at the detector has to be integrated over

all points of the source transverse size taking into account the

intensity distribution (density of radiation) inside the source

transverse size.

Such a model is completely sufficient in the case of X-rays.

It allows one to calculate theoretical results which fully coin-

cide with the experimental results obtained with a third-

generation SR source (Kohn et al., 2000, 2001). We note that

in some works (for example, Singer & Vartanyants, 2014) the

Gaussian Schell-model source and the function of spectral

degree of coherence are considered according to the general

theory of coherence (Mandel & Wolf, 1995). However, this

approach is rather complicated, especially in the case of a long

CRL system.

We consider first the one-dimensional CRL in the plane

(x, z). Let us assume that the electric field of the incident

radiation from a point at the source position with the trans-

verse coordinate x0 can be described in front of the first CRL

by the function

E0ðxÞ ¼ ði�Þ1=2 P x� x0; z0cð Þ; ð1Þ
where

Pðx; zÞ ¼ 1

ði�zÞ1=2
exp i�

x2

�z

� �
ð2Þ

is the Fresnel propagator as a transverse part of the spherical

wave in the paraxial approximation,

z0c ¼ z0 1 þ i
�r

z0

� ��1

; �r ¼ e 2
1

�

�2
0

: ð3Þ

Here z0 is the distance from the source to the beginning of the

first CRL (see Fig. 3), � is the radiation wavelength, �0 is the

angular divergence of the beam due to relativistic phenomena,

and e1 = ð2 ln 2=�Þ1=2 = 0.6643.

It is easy to verify that the intensity I0 = E0

�� ��2
of such a field

at distance z0 is equal to

I0ðxÞ ¼
1

z0

exp � ln 2
x 2

x 2
r

� �
; xr ¼

z0 �0

2
: ð4Þ

One can see that z0I0(xr) = 0.5. Here and below we use the full

width at half-maximum (FWHM) as a measure of the width

for Gaussian functions. Thus the parameter �r allows one to

take into account phenomenologically the finite angular

divergence of the beam.

The CRL is an array of elemental bi-concave lenses (chips)

with a relatively large curvature radius R and a large focal

distance f. We can consider each chip as a thin lens and

describe it by the transmission function (Kohn et al., 2003)

Tðx; fcÞ ¼ exp �i�
x2

�fc

� �
; ð5Þ

where

fc ¼
f

1 � i�
; f ¼ R

2�
; � ¼ �

�
: ð6Þ

This function is applied for all chips of the CRL except the first

one. For the first chip the function has to be modified with

the aim of taking into account the geometrical aperture of

the CRL.

We assume that there is a slit in front of the CRL which

absorbs all radiation out of the aperture of size 2xa (see Fig. 1).

Therefore the correct expression for the transmission function

of the first chip has to be

Tðx; fcÞ ¼ exp �i�
x 2

�fc

� �
	ðxa � xj jÞ; ð7Þ

where 	(x) is the Heaviside function which equals unity for a

positive argument and zero for a negative argument. However,

we want to approximately replace the Heaviside function by

the Gaussian function with the same integral intensity of the

beam in the limit � = 0 (transparent lens). Namely, we use the

function exp½��x2=ð8x2
aÞ� instead of the function 	ðxa � xj jÞ

(Kohn, 2017). It is easy to verify that the squared values of

these functions give the same integral in the infinite limits. In

this approximation the transmission function of the first chip

has the form of equation (5) but with a replacement of � by

�1 ¼ � þ �f

8x2
a

: ð8Þ

Let us assume that we know the electric field En(x) in front of

the nth chip. Then the electric field in front of the (n + 1)th

chip can be calculated as
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Figure 3
(a) Scheme showing that a shifted source is equivalent to a rotating CRL.
Here, SRS is the synchrotron radiation source and D is the detector. A
new optical axis makes an angle 	 with the old axis. In reality xs � z0.
(b) The experimental rocking curve (markers) is taken from the work of
Snigireva et al. (2004) and the theoretical rocking curve (solid line) is
from this work.
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Enþ1ðxÞ ¼
Z

dx1 P x� x1; zð ÞT x1; fcð ÞEn x1ð Þ; ð9Þ

where z is the distance between chips. In reality a chip has a

thickness p = d + x 2
a =R, where d is the thickness of a thin layer

of material between two surfaces of the bi-concave lens (see

Fig. 1). In the approximation of phase contrast imaging the

object (the chip in our case) is considered as being very thin

with the same phase shift and absorption, but the distance z

has to be greater than p. It can be much greater in a transition

from the last chip of one CRL to the first chip of another CRL

or to a detector.

In the works by Kohn (2009a,b, 2012) the theorem was

formulated that if the electric field in front of the nth cheap

has the form

EnðxÞ ¼ T x; anð ÞP x� x0; bnð ÞT x0; cnð Þ; ð10Þ
where P(x, b) and T(x, a) are described by equations (2) and

(5) but with general complex parameters, then En+1(x) has the

same form with new parameters an+1, bn+1, cn+1, and there are

recurrent relations between the parameters. We write these

relations in a form suitable for calculations, namely

g ¼ a�1
n þ f �1

c ; bnþ1 ¼ zþ bnð1 � zgÞ;
h ¼ gb�1

nþ1; a�1
nþ1 ¼ bnh; c�1

nþ1 ¼ c�1
n þ zh:

ð11Þ

Let us consider a general set-up with several CRLs installed in

the beam path (Fig. 2). To calculate this set-up we begin with

the parameters of the incident wave a�1
0 = 0, b0 = z0c + p1/2,

c�1
0 = 0, where p1 > p is the distance corresponding to one chip

in the first CRL, and apply the relations (11) for the first chip

with �1 instead of � and with z = p1. Then we apply the same

relations (N� 2) times for subsequent chips with � and z = p1.

Then we apply the relations for the last chip with � and z =

p1/2 + z1 + p2/2 where z1 is the distance between the first and

second CRL and p2 is the same as p1 for the second CRL.

Then we calculate the second CRL and so on.

As a result, we can obtain numerically the complex para-

meters a, b, c at the detector which is positioned at some

distance from the last CRL. In this approach the intensity of

radiation is described by the Gaussian function (Kohn, 2012)

Ips x; x0ð Þ ¼ zt

bj j exp � x 2
0

2�2
0

� �
exp � ðxþMx0Þ2

2�2

� �
: ð12Þ

The index ‘ps’ indicates the point source, zt is a normalization

parameter which is equal to the total distance from the source

to the end of the last CRL,

� ¼ ð2K½A� B�Þ�1=2; �0 ¼ ð2K½C � AM�Þ�1=2; ð13Þ
where K = 2�/� and

M ¼ B

A� B
; A ¼ �Im ð1=aÞ;

B ¼ �Im ð1=bÞ; C ¼ �Im ð1=cÞ:
ð14Þ

In this work we consider the general case where the centre of

the source is shifted from the optical axis (z axis) by the

distance xs. Therefore the density of radiation inside the

source transverse section can be described by the Gaussian

function Bs(x0 � xs) where

BsðxÞ ¼
1

�sð2�Þ1=2
exp � x 2

2�2
s

� �
: ð15Þ

Here �s = ws /e2, e2 = ð8 ln 2Þ1=2 = 2.355 and ws is the source

transverse size (FWHM) along the x axis. We obtain the

intensity distribution at the detector taking into account the

source size by means of integrating the product of (12) and

Bs(x0 � xs) over x0, namely

Irs x; xsð Þ ¼
Z

dx0 Bs x0 � xsð Þ Ips x; x0ð Þ: ð16Þ

The index ‘rs’ indicates the real source.

As a result of direct calculations of the integral (16) we

obtain

Irs x; xsð Þ ¼ SðxsÞ
ð2�Þ1=2 �1

exp � xþMxs Csð Þ2

2�2
1

� �
; ð17Þ

where

Cs ¼
�2

0

�2
s þ �2

0

; �1 ¼ �2 þM 2Cs�
2
s

� �1=2
; ð18Þ

and S(xs) is the integral intensity which is described by the

equation

S xsð Þ ¼ ð2�Þ1=2 zt

bj j C
1=2
s � exp � x 2

s Cs

2�2
0

� �
: ð19Þ

It is of interest to examine how the intensity of radiation

depends on the distance in space behind the last CRL. Let us

assume now that the parameters a0, b0, c0 correspond to the

end of the last CRL and z1 is the distance from this end to the

detector (Fig. 3a). The recurrent relation for the parameter b

at the detector position in the case of propagation in free

space is as follows,

b ¼ b0 þ z1D; D ¼ 1 � b0 a
�1
0

� �
: ð20Þ

The effect of beam focusing occurs at the distance z1 = zf

where the intensity has the maximum value, and therefore the

quantity bj j has the minimum value. One can directly verify

that the minimum value of bj j is realized at zf =

�Reðb0 D
�Þ= Dj j. In the general case zf can be negative (Kohn,

2003). However, this approach is valid only if zf > 0. The

important beam parameter is the beam transverse size (BTS),

which is the FWHM of the intensity profile. In the case of a

point source the BTS is equal to w = e2�. In reality, taking into

account the source size, the BTS is equal to w1 = e2�1. We note

that the value w at the focal distance is called the diffraction-

limited focus size which is less than the real focus size w1.

Since the integral intensity is independent of z1, we have the

result that the value G = bj j2ðA� BÞ does not depend on z1.

On the other hand, the parameter

M ¼ Im ðbÞ
G

¼ z1 þ Z1

z0 þ Z0

; ð21Þ

where
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Z1

z0 þ Z0

¼ Imðb0Þ
G

;
1

z0 þ Z0

¼ ImðDÞ
G

: ð22Þ

The parameters Z0, Z1 are useful because they equal zero for a

single thin lens.

Equations (1)–(22) allow one to examine one long CRL or

a system of CRLs with a long distance between them. Such

systems have new properties compared with a thin CRL. One

is a sensitivity to the orientation of the long CRL, i.e. to

angular deviations from the optical axis. This angular depen-

dence is described by equation (19). The angle 	 is the ratio of

the transverse source coordinate xs and the longitudinal

distance z0 (see Fig. 3a).

We note that a two-dimensional (circular) CRL is described

in our approximation by the same equations as the product

of intensities for the x and y coordinates (Kohn, 2017). For

example,

I ð2Þps x; y; x0; y0ð Þ ¼ Ips x; x0ð Þ Ips y; y0ð Þ: ð23Þ

3. Rocking curve of a long CRL

In the experimental work of Snigireva et al. (2004) a two-

dimensional (circular) long CRL was investigated. It was

composed of N = 407 chips. Each chip was a bi-concave Al

parabolic lens with R = 200 mm, p = 1 mm and d = 15 mm (see

Fig. 1). The work was performed with the aim of checking the

analytical theory of a long CRL (Kohn, 2002, 2003). The

longitudinal length of such a CRL was L = 40.7 cm, the photon

energy was 25 keV and the experiment was performed at the

ESRF (beamline BM5). The source-to-CRL distance was z0 =

40 m. The transverse source size (FWHM) was 80 mm verti-

cally and 250 mm horizontally.

Among the other properties of the CRL a rocking curve

was measured by means of measuring the integral intensity as

a function of the angle between the CRL axis and the optical

axis. The analytical theory (Kohn, 2002, 2003) did not consider

this property. The experimental scans were performed in both

planes (x, z) and (y, z). Both scans were identical to each

other. They had the shape of a Gaussian function with a

FWHM of approximately 0.40 mrad.

It is problematic to calculate the rocking curve of a long

CRL accurately. A rough estimation of the rocking curve

FWHM can be obtained in a geometrical optics approximation

from the effective aperture of the CRL Ae and the long-

itudinal length L as w	
(g) = 2Ae /L. It was shown by Kohn (2017)

that Ae = (�f /2�)1/2 in the thin-lens approximation, and f = R0 /

2�, R0 = R/N. The parameters � and � can be obtained by

means of an online internet program (Kohn, 2013) as � =

8.645 � 10�7, � = 1.760 � 10�9.

This program uses the DABAX (2017) data for taking into

account the dispersion corrections due to photoelectron

absorption of X-rays in matter. In addition, the absorption

correction due to the Compton scattering in � was calculated

by means of the interpolation equations given by Van Greken

& Markowicz (2001). As a result we obtain Ae = 58.8 mm and

w	
(g) = 0.29 mrad. This estimation is smaller than the experi-

mental value of 0.40 mrad.

The equations of the preceding section can be used for

calculating the FWHM of the rocking curve in a more accurate

approximation. The rocking curve is described by the integral

intensity equation (19). In our approach the CRL is oriented

along the optical axis but the centre of the source can be

shifted from the optical axis. As a result, the direction from the

source to the CRL makes the angle 	 = xs /z0 with the optical

axis (see Fig. 3a).

As follows from equation (19), the theoretical rocking curve

has a Gaussian shape with FWHM w	 = e2�0 /(z0Cs
1/2). We

inputted the parameters of the experiment into an online

computer program (Kohn, 2018) and obtained w	 =

0.401 mrad in both the vertical direction and the horizontal

direction. We note that the online computer program (Kohn,

2018) is also a result of this work. We have found that the

dependence on the source size is very weak and theoretical

values coincide with the experimental results quite well.

Fig. 3(b) shows a comparison of the experimental data from

the work of Snigireva et al. (2004) as markers and the theo-

retical curve of this work as a solid line. The normalized values

are shown. In this calculation we assumed a large angular

divergence of the beam.

Thus we can conclude that the geometrical optics and the

thin-lens approximations are not valid in this case. The rocking

curve FWHM becomes larger because ray trajectories inside

the CRL are not straight lines. For the same reason the online

program gives a CRL effective aperture value Ae = 74.0 mm as

an integral relative intensity behind the CRL (Kohn, 2017).

We can conclude that accurate calculation on the basis of

recurrent relations allows one to obtain the correct rocking

curve FWHM in correspondence with the experimental

results.

It is of interest that w	 depends slightly on distance z0 for

large distances. For example, for the distance z0 = 400 m the

program gives the values w	 = 0.399 mrad (Ae = 73.6 mm)

which is only slightly less compared with the case of z0 = 40 m.

The reason for this dependence is as follows. The true rocking

curve is determined for the plane wave. We calculate the sum

of w	 and the effective angular divergence of the beam �e. The

value of �e is determined as a ratio of the effective aperture

and z0. For larger values of z0 we have smaller values of �e.

The approach developed in the preceding section allows

one to calculate the properties of a system consisting of

several CRLs with a relatively large distance between them.

Let us consider a system of two CRLs. Each of them has three

chips with the same parameters as in the case above and a

distance 40.1 cm between them. Therefore the total length of

this system is 40.7 cm which is the same as in the case of the

experiment but the total number of chips is 6 instead of 407.

The focus distance of such a system is 20.2 m, which is much

greater than the 0.13 m for the case considered in the

experiment.

For such a system and for z0 = 40 m the program gives w	 =

1.792 mrad, Ae = 389.4 mm, w	
(g) = 1.913 mrad. For z0 = 400 m

the program gives w	 = 1.783 mrad, Ae = 387.7 mm, w	
(g) =
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1.905 mrad. Thus we see that for the system of two thin CRLs

a correspondence between a geometrical estimation and the

program calculation is better even despite the fact that the

effective aperture is not well defined in this case.

4. Spatial coherence properties of a long CRL

Coherence is an opportunity to observe the interference

fringes. Spatial coherence is an opportunity to create the

interference pattern for two points in the transverse section

of the beam. One can use Young’s experimental setup for

measuring the transverse coherent length where an inter-

ferometer with two slits is used (Fig. 4). In this case the electric

field at the detector is defined by

Eðx; x0Þ ¼
Z

dxi P x� xi; zð ÞTi xið ÞE0 xi; x0ð Þ; ð24Þ

where z is the interferometer-to-detector distance, Ti(xi) is the

transmission function of the interferometer and E0(xi, x0) is

the electric field in front of the interferometer. The latter

function depends on the coordinate x0 of the point at the

source as described above. We note that the source size is the

origin of the decrease in the coherence length.

In the case of a long CRL the function E0(xi, x0) is deter-

mined by equation (10). For a large distance z we can choose

approximately the function Ti(xi) in the form

Ti xið Þ ¼ � xi � x1 þ sð Þ þ � xi � x1 � sð Þ; ð25Þ
where �(x) is the Dirac delta function, x1 is a shift of the

interferometer centre from the optical axis, s = d/2 and d is the

distance between the slits (Fig. 4). Taking this into account we

can write the intensity of radiation at the detector with a

normalization factor as above,

Ips x; x0ð Þ ¼ �zt I1ðxÞ þ I2ðxÞ
	 
 ð26Þ

where

I1ðxÞ ¼ E1ð�1; xÞ�� ��2 þ E1ð1; xÞ
�� ��2

; ð27Þ

I2ðxÞ ¼ 2Re E1ð�1; xÞE �
1 ð1; xÞ

	 

; ð28Þ

E1ðn; xÞ ¼ P x� x1 � ns; zð ÞE0 x1 þ ns; x0ð Þ: ð29Þ

The next step is integrating equation (26) over the coordinate

x0 as described in equation (16). We will assume here that

xs = 0. Taking into account equations (17)–(19) we haveZ
dx0 Bsðx0Þ E1ðn; xÞ

�� ��2¼ ztC
1=2
s �

�z bj j�1

exp � ðx1 þ nsÞ2

2�2
1

� �
: ð30Þ

The interference term I2(x) can be integrated similarly by

means of the table integral

Z
dx exp i�xþ i�x2

� � ¼ i�

�

� �1=2

exp �i
�2

4�

� �
: ð31Þ

We omit calculations and write the result as follows,

IrsðxÞ ¼ I0 s; x1ð Þ 1 þ F s; x1ð Þ cos 2�
d

�z
x� x 0

1ð Þ
� �� �

ð32Þ

where

I0 s; x1ð Þ ¼ 2ztC
1=2
s �

�z bj j�1

exp � x2
1 þ s2

2�2
1

� �
cosh

dx1

2�2
1

� �
; ð33Þ

F s; x1ð Þ ¼ exp � s2

2�2
1

C 2
1

� �
cosh�1 dx1

2�2
1

� �
; ð34Þ

C1 ¼
4��s�

� bj j C 1=2
s ; x 0

1 ¼ x1 1 � z

za
þ z

zb
1 �MCs�

2
s

�2
1

� �� �
:

ð35Þ
Here,

1

za
¼ Re a�1;

1

zb
¼ Re b�1; coshðxÞ ¼ expðxÞ þ expð�xÞ

2
:

ð36Þ
Since the complex parameters a, b, c are calculated numeri-

cally by means of the recurrence equations (11) in the general

case, these equations allow one to simplify the calculations

only. Nevertheless, some conclusions can be made analytically.

The period of the interference fringes is equal to p = �z /d.

The amplitude of the oscillations depends on the distance d

between the slits and the shift x1 of the interferometer centre

position relative to the optical axis. The latter occurs due to

the finite width of the beam which can be focused by the CRL.

We define the transverse coherence length Ltc(x1) as the

FWHM of the curve F(s, x1) of equation (34) as a function of

the first argument s. This value still depends on the shift of the

interferometer. Full dependence Ltc(x1) can be obtained

numerically. The particular value for x1 = 0 is equal to

Ltcð0Þ ¼ e2

�1

C1

¼ C0

� bj j
ws

�2 þ �2
s M

2Csð Þ1=2

�C 1=2
s

: ð37Þ

Here C0 = e2
2 /4� = e1

2 = 0.4413. We note that an advantage of

our approach is the possibility to obtain the analytical equa-

tion for the transverse coherence length in the case of a

complex set of long CRLs. This is impossible in the general

theory of coherence (Mandel & Wolf, 1995).

Let us consider first a most simple case when the CRL is

absent. Then b = z0c = z0(1 + i�r)
�1, where �r = �r /z0,

i.e. equation (3). We note that in the general case �r � 1. For
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Figure 4
Scheme showing a way to measure and to calculate the transverse
coherence length from the definition based on Young’s experiment with
the interferometer having two slits.
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example, typical values for ESRF SR are: � = 10�10 m, �0 =

10�5, z0 = 44 m and �r = 0.01. In this case A = C = �0
�1 = 0,

Cs = 1, B = ��r /z0, bj j ’ z0 , and finally

Ltc ¼ C0

�

�
1 þ w 2

s

w 2

� �1=2

; ð38Þ

where � = ws /z0, w = e2� = z0�0. If the angular divergence of

the beam is large and w � ws, then we have the well known

expression Ltc = C0�/� which is often used with the approx-

imate value of the coefficient C0 = 0.5 (Buffiere & Baruchel,

2015). In this case Ltc depends weakly on x1. We note that

various authors used different definitions for the transverse

coherence length and the source size. In terms of the distance

d we can write Ltc = e2�tc /2. Then �tc = �z0 /(2��s) (Yabashi et

al., 2001). If one defines the source size as ws
0 = 23/2�s then �tc =

(21/2/�)�z0 /ws
0 (Kohn et al., 2000). It is of interest that the

factor 21/2/� = 0.4501 is very close to C0.

For our example, at the ESRF w = 440 mm while the vertical

source size ws is less than 50 mm. However, the horizontal

source size may be comparable with this value. Equation (38)

may be written in a more clear form as follows,

Ltc ¼ C0�
1

�2
þ 1

�2
0

� �1=2

: ð39Þ

If the angular divergence of the beam is large, then Ltc is

determined by the angular size of the source. In the opposite

case it is determined by the angular divergence of the beam.

Therefore even a point source has a finite spatial coherence

length. The reason for this is the finite transverse size of the

beam. The condition of a fully coherent beam is formulated as

the equality of the beam size z0�0 and Ltc. In the case �0 � �
this condition can be formulated as a condition for the

transverse emittance " = ws�0 in the form " = C0�. In the

opposite case we obtain the value for �0 = (C0�/z0)1/2 which

depends on z0. In reality the beam angular divergence is

independent of z0, and therefore z0 = C0�/�0
2. With �0 = 10�5

we obtain z0 = 0.5 m, i.e. a very small value. Distances much

smaller 30 m are impossible for experiments.

Let us consider now a more complex case of one thin lens

under the conditions of most interest, namely, �r � 1, �1 � 1

and f � z0. We have from the reccurent relations (11)

b ’ zg þ i z2�2 � z0�rð Þ; ð40Þ
where

zg ¼ z0 þ z1 � z2; z2 ¼
z0z1

f
; �2 ¼ �1 þ �r: ð41Þ

Equations for any distance z1 are rather complicated, and

therefore we restrict ourselves to the case of the focal length

when zg = 0. In this case z1 = f(1 � f /z0)�1 ’ f.

Below, to simplify the derivations, we will consider rough

estimations only. Accurate values can be obtained numerically

by means of an online computer program (Kohn, 2018).

Therefore z2 ’ z0 and b = iz0�1. Then B = (z0�1)�1. In the

same approximation we calculate A = ( f�1)�1, C = B. The

magnification factor M ’ B/A = f /z0 while �0
�1 = 0, Cs = 1.

Finally, we obtain from (37),

Ltcð0Þ ¼
wf =wb

w 0
s

; w 0
s ¼ Mws; ð42Þ

where

wf ¼ C0�f�1ð Þ1=2; wb ¼ w 2
f þ w 0

sð Þ2
h i1=2

: ð43Þ

We note that wb = w1 = e2�1 is the beam size (FWHM) at the

focus distance according to (17) and (18), and wf is the same

for a point source (Kohn, 2012).

The first result which follows from equation (42) is the fact

that the symmetric coherence length is very large for a point

source and is independent of the initial beam angular diver-

gence. The latter follows from the condition �r � 1. However,

this is not the case for a shifted interferometer. The inter-

ference fringes will disappear if x1

�� ��>w 2
f =d even in the case of

a point source. The second result is that, for a source of very

large size, Ltc(0) = wf , and it is independent of the source size.

This value is equal to the diffraction-limited focus size which

can be much smaller than the beam size at the focus

wb ’ ws
0 � wf . This value depends weakly on the inter-

ferometer shift if x1

�� ��<w 2
b=d.

In the general case it is of interest to compare Ltc(0) = Ltc
(1)

with Ltc(s) = Ltc
(2). The second value corresponds to the case

when one of two slits of the interferometer is located on the

optical axis. It follows from equation (34) that in both cases we

can write L
ðnÞ
tc = 2�1ðlnXnÞ1=2 where Xn is a solution of the

following equations,

XH
1 ¼ 2; XH

2 X2 þ X �1
2

� � ¼ 4; H ¼ C 2
1 =2: ð44Þ

The first equation has the analytical solution (37) while the

second equation can be calculated numerically. We note that

H depends on the source size according to equation (35). It

equals zero for the point source and can be quite large for the

real source.

In the case of a large source size H � 1 and we can write

Xn = 1 + gn, gn �1. Taking into account the first term of

the Taylor series only inside the round brackets we obtain

X2 ’ X1 ’ 1 þ ln 2=H and L
ð2Þ
tc ’ L

ð1Þ
tc = w1=C1 � w1. In the

opposite case H � 1 it is evident that X1 is very large and

increases to infinity when H decreases to zero, but X2 remains

finite and slightly less than 4. In this case Ltc
(2) is slightly less

than w1 ’ w.

5. Numerical example

The method using the recurrence relations (11) and the

equations presented above allow us to elaborate the computer

program for calculating all the main parameters of the X-ray

beam, namely the maximum value of the relative intensity, the

beam size (FWHM), the width (FWHM) of the rocking curve,

the integral intensity, the effective aperture, the magnification

factor and the focal length for any value of source transverse

size as well as the two lengths of transverse coherence as

described at the end of the preceding section.

This program is written in the Javascript programming

language with the possibility of working online (Kohn, 2018),
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thus allowing its use directly on any computer device (laptop,

tablet, smartphone). Unfortunately, this format is unable

to read and write files. Instead, a data exchange can be

performed using the copy-and-paste technique. The program

can calculate the distance dependence of the main beam

parameters. As an example of the program use, Fig. 5 shows

the distance dependence of the beam size for a point source

(black curve number 1), the same for a real source (red curve

2) and Ltc
(1) (blue curve 3) inside the interval close to the focal

length.

The results correspond to the case of the long CRL

considered in x3, which consists of 407 bi-concave chips made

from Al with a curvature radius of 200 mm, aperture 900 mm,

source-to-CRL distance z0 = 40 m and source size 50 mm.

The energy of the X-ray photons is 25 keV. The focal length

counted from the end of the CRL is equal to 13.19 cm. Since

the integral intensity S = e3Imw is independent of the distance,

the distance dependence of Im can be obtained as S/(e3w).

Here e3 = (2�)1/2/e2 = 1.064. We note that, in the case under

consideration, Ltc
(2) ’ Ltc

(1).

The main conclusion is that the diffraction-limited beam

size at the focus is very close to the coherence length. This fact

is evident physically and follows from equation (42) when

wb � wf . However, it is difficult to derive this conclusion

analytically in the general case. The program shows that the

coincidence occurs for 500 chips and more when the focal

length decreases to zero if it is counted from the end of the

CRL. The second conclusion is that the difference between the

beam size and the coherent length is minimal just at the focus,

and for other distances it is greater and increases with the

distance from the focus.

6. Conclusion

We have shown that the semi-analytical theory of a long X-ray

compound refractive lens system based on the recurrence

relations allows one to calculate the correct width of the

rocking curve of a long CRL which coincides with the

experiment by Snigireva et al. (2004). The recurrence relations

are more complicated compared with the analytical equations

and a computer is necessary to obtain the results, but the

computing time is small which allows one to obtain an esti-

mation of the long CRL properties quickly.

In addition, some conclusions can be made without

computing. This approach allows us to derive the equations for

the transverse coherence length of the beam passing a set of

CRLs of arbitrary complexity. We note that it is very difficult

in the frame of the Shell-model approach based on the

propagation of the mutual coherence function. We are sure

that the model of the synchrotron radiation source as a set of

independent point radiators is working and truly describes the

experimental data.
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Figure 5
Distance dependence of the beam size for a point source (black curve 1),
for a real source (red curve 2) and a transverse coherence length (blue
curve 3). See text for details.
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