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This article reports computer simulations of X-ray spherical wave dynamical

diffraction in one and two single crystals in the Laue case. An X-ray compound

refractive lens (CRL) as a secondary radiation source of spherical waves was

considered for the first time and in contrast to previous simulations with the

assumption of the use of a slit. The main properties of the CRL as a secondary

source are discussed and two focusing phenomena are analysed. The first one is

the diffraction focusing effect for one single crystal in the reflected beam and in

the case of a large source-to-detector distance. The second one is the same but

for two single crystals and for the twice-reflected beam in the case of a short

distance between the source and detector. The first effect is well pronounced in

the case of strong absorption. However, it may also be used as an element of an

energy spectrometer in the medium and even weak absorption case. The second

effect will appear in the case of weak absorption. It is shown that it is not

effective to use it in an energy spectrometer. In the case of weak absorption

the transverse size of the diffraction focused beam will oscillate together with

the reflected beam integral intensity. The oscillation period is close to the

extinction length.

1. Introduction

The X-ray dynamical diffraction theory for monochromatic

plane waves in ideal crystals was developed in the first half of

the 20th century by Ewald and Laue (Pinsker, 1978; Authier,

2005). However, for a long time it was impossible to verify the

theory because of the absence of thick, perfect crystals and

also because of a lack of ways to generate monochromatic

plane waves. The first successful experiment was performed in

1959 using an experimental setup with a narrow slit in front of

a crystal in the Laue case where both transmitted and reflected

beams exit the crystal through the surface that is opposite to

the entrance surface (Kato & Lang, 1959). To describe the

observed Pendellösung fringes Kato (1961) developed the

theory for this experimental setup. He named it the theory of

X-ray spherical wave diffraction.

Actually, Kato’s theory was developed for a point source at

the entrance surface of a crystal. The task was analytically

solved through Bessel functions. Later on it was shown that

this solution is the crystal propagator which allows calculation

for the general case of an arbitrary incident wave by means of

a convolution (Afanas’ev & Kohn, 1971). Such a solution

matches Takagi’s (1962) equations solution. Several years

later Afanasev & Kon (1977a,b) showed that the distance

between a point source and a detector may significantly

change the results in this experimental setup.
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Moreover, the diffraction focusing effect was discovered

while half of the radiation intensity becomes localized at a

detector in a small transverse region, if t ¼ t0 where t is the

crystal thickness, t0 ¼ C0L is the characteristic thickness that is

proportional to the distance L between the source and

detector, and C0 is a very small dimensionless coefficient. The

feature of this focusing effect is that just a spherical wave, but

not a plane one, may be focused. It is similar to a light focusing

(Pendry, 2000) lens made with metamaterial of negative

refraction index. In the case of X-ray radiation negative

refraction occurs for half of the wavefield that is absorbed

weakly in a narrow angular region near the Bragg angle.

X-ray spherical wave dynamical diffraction in one crystal

for any source-to-detector distance was investigated both

theoretically and experimentally in a series of works (Aristov

et al., 1978, 1980, 1982; Kohn, 1979; Kohn et al., 2000, 2013;

Koz’mik & Mihailiuk, 1978; Shulakov & Smirnova, 2001).

Recently, a new type of energy spectrometer for X-ray free-

electron lasers (XFELs) was proposed using diffraction

focusing (Kohn et al., 2013).

Nevertheless, until now the properties of diffraction

focusing by one crystal have not been studied completely. In

early works an X-ray tube as a source and a narrow slit in front

of the crystal were assumed. Today the third-generation

synchrotron radiation (SR) sources allow researchers to

obtain much more detailed information about X-ray beam

transformation by the crystal. The source-to-detector distance

is fixed and very large on SR beamlines. Therefore it is

necessary to use a secondary source which can be created by

an X-ray compound refractive lens (CRL) (Snigirev et al.,

1996, 2009; Lengeler et al., 1999).

In this work we present results of accurate computer

simulations in the case where a CRL is used as a secondary

source of small transverse size. We show that using a CRL in

an experiment allows one to study features of X-ray spherical

wave diffraction more accurately than by using a slit.

Another diffraction focusing effect was discovered theore-

tically in the case of two X-ray spherical wave reflections in a

system of two crystals of the same thickness t1 ¼ t2 that are

located at a small source-to-detector distance (Indenbom et

al., 1974a,b). This effect was immediately used in the experi-

ment as a kind of energy spectrometer for X-ray radiation

(Suvorov & Polovinkina, 1974; Indenbom & Suvorov, 1976)

without analysing how the source-to-detector distance varies

the size of a beam at the focus.

This question was analysed several years later (Aristov,

Snigirev et al., 1986; Aristov et al., 1986a,b). It was shown that

the distance varies the focusing conditions. For crystals of

different thicknesses t1 and t2 there are three focusing condi-

tions, i.e. (i) t1 þ t2 ¼ t0, (ii) t1 ¼ t2 � t0 and (iii) t1 ¼ t2 þ t0.

The first case is similar to a situation where two crystals work

like one crystal and only the part of the radiation having a

small absorption index is focused. In the second or third cases

different parts of the radiation wavefield with different

absorption power are focused. When t0 ¼ 0 both the latter

conditions are fulfilled simultaneously and one obtains the

narrowest beam at the focus.

In this work we study the focusing effect of two crystals

through more detailed computer simulations. We show that

zero distance can be realized using a CRL when the detector

is placed at focal distance from the CRL and a system of two

crystals may be located in-between the CRL and detector.

In the case of t1 ¼ t2 the beam size increases rapidly with

distance.

2. Experimental setup and method of computer
simulations

Let us consider the experimental setup as shown in Fig. 1 in

the case of one crystal. In the case of two crystals they are

close to one another. However, some small distance is still

assumed – to separate in space the transmitted and reflected

beams. As may be seen in Fig. 1, the X-ray beam from an SR

source located at a large distance z0 from the CRL is mono-

chromated by a standard Si double-crystal monochromator

(M). Then the CRL creates a divergent beam with the origin at

a secondary source located at the CRL focus. The CRL

aperture is restricted by a slit (S). It prevents X-ray trans-

mission in the area beyond the aperture if the CRL does not

completely absorb radiation at the aperture’s end.

The beam angular divergence coming from a secondary

source (F) is greater than the crystal (C) angular area for

dynamical diffraction near the Bragg angle. That is why, using

any crystal position, just a part of the CRL aperture is used.

But by rotating the crystal one can use any part of the CRL

aperture. Such a rocking curve allows one to investigate the

CRL aperture quality. As has been shown by Kohn et al.

(2013), the diffraction focusing effect may be used to measure

the X-ray energy spectrum if the crystal is located at the front

of the detector.

On the other hand, to obtain a diffraction pattern for

monochromatic radiation it is necessary to use a scheme where

the crystal is located at equal distances from both the

secondary source and detector. Such a location satisfies

the condition of polychromatic focusing when pictures for

various monochromatic harmonics are located at the same

place in the detector.

In the case of monochromatic radiation the picture is

independent of the crystal position. It is convenient to assume

for computer simulations that the detector is located just
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Figure 1
Experimental setup used in computer simulations. Here M is a
monochromator, S is a slit, CRL is a compound refractive lens, F is a
point of the beam focus (secondary source), C is a crystal, D is a detector.
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behind the crystal. Then, in the case of one crystal, the electric

field of the X-ray reflected beam at the detector may be

calculated as follows:

EðxÞ ¼ R
dx1PCðx� x1Þ

R
dx2Pðx1 � x2;Z1ÞTðx2Þ

� Pðx2 � x0; z0Þ; ð1Þ
where z0 is the distance from a point source of the SR to the

CRL, Z1 ¼ zf þ z1 is the distance from the CRL to the

detector (see Fig. 1).

Here

Pðx; zÞ ¼ ði�zÞ�1=2 exp i�
x2

�z

� �
ð2Þ

is the Fresnel propagator as a transverse part of the spherical

wave along the x direction in the paraxial approximation,

PCðxÞ ¼
Z

dq

2�
expðiqxÞPCðqÞ ð3Þ

is the crystal propagator as a Fourier image of the plane-wave

amplitude for reflection by the crystal PCðqÞ, where q

describes an angular deviation � ¼ q=K, K ¼ 2�=�, from the

Bragg angle �B.

In the symmetrical Laue case we have

PCðqÞ ¼
s

2b
expð�M � iBÞ � expð�M þ iBÞ½ � ð4Þ

where

M ¼ �0t

2 cos �B

; B ¼ bt

2 cos �B

; b ¼ ða2 þ s2f Þ1=2;

a ¼ ðq� q0Þ sinð2�BÞ; s ¼ KC�h; f ¼ ��h=�h: ð5Þ
Here �0 ¼ K�00

0 is a linear absorption coefficient, �00
0 is the �0

imaginary part, and then �0, �h and ��h are Fourier compo-

nents of the crystal susceptibility � ¼ "� 1. " is the dielectric

function, t is the crystal plate thickness, q0 ¼ K�0 and �0 is an

angular shift of the crystal orientation from the position where

the Bragg condition is realized for the plane wave along the

optical axis, C is the factor of polarization state, namely C ¼ 1

for � polarization and C ¼ cosð2�BÞ for � polarization. Details

of the derivation of this equation are given in the work of

Kohn (2002).

An X-ray beam from a SR source is focused by the CRL.

The CRL is described by transmission function TðxÞ in the thin

lens approximation. This function may be written as

TðxÞ ¼ exp �i�
x2

�F
ð1 � i�Þ

� �
�ðxa � jxjÞ; ð6Þ

where F ¼ R=ð2N	Þ, � ¼ 
=	, xa ¼ A=2, A is the aperture of

the CRL which is equal to the size of the slit in front of the

CRL, R is the curvature radius at the elemental double-

concave lens (chip) surface apex, N is the number of chips. The

complex refraction index of the CRL matter is n ¼ 1 � 	þ i
.

The source size may be taken into account by coordinate x0.

It defines the transverse shift of a point source from the optical

axis. The detector measures the X-ray radiation intensity

IðxÞ ¼ jEðxÞj2. In the case of two reflections from two crystals

we have an equation that is similar to equation (1):

EðxÞ ¼ R
dx1P

2
Cðx� x1Þ

R
dx2Pðx1 � x2;Z1ÞTðx2Þ

� Pðx2 � x0; z0Þ; ð7Þ
where function PCðxÞ is replaced by function P2

CðxÞ.
Computer simulations are performed with a program based

on our own language ACL. The ACL interpreter is a Java

program – it is free to download together with a programming

language tutorial (Kohn, 2017). These simulations reveal that

for crystal diffraction a calculation considering the secondary

source at the focus of the CRL is sufficient. This approxima-

tion may be verified analytically. We use a property of the

Fresnel propagator that convolution of two propagators with

distances zf and z1 is equal to a propagator with distance Z1.

Therefore we can replace equation (1) by the following

formulae:

EðxÞ ¼ R
dx1PCðx� x1Þ

R
dx2Pðx1 � x2; z1ÞBðx2; x0Þ; ð8Þ

Bðx; x0Þ ¼
R

dx1Pðx� x1; zf ÞTðx1ÞPðx1 � x0; z0Þ: ð9Þ
Function Bðx; x0Þ describes the radiation field at the CRL

focus. Substituting equations (2) and (6) we obtain

Bðx; x0Þ ¼
Aðx; x0Þ

i�ðzf z0Þ1=2

Z
dx1 exp �i2�

ðx� x00Þ
�zf

x1 �
��

�F
x2

1

� �
;

ð10Þ
where

Aðx; x0Þ ¼ exp �i�
x2

�zf
þ x2

0

�z0

� �� �
; x00 ¼ �x0

zf

z0

: ð11Þ

Here we use the relation 1=zf ¼ 1=F � 1=z0.

The integral (9) can be written as an analytical expression,

Bðx; x0Þ ¼
Aðx; x0Þ
iC2

Gðx� x00; �Þ ð12Þ

where

C2 ¼
C1

1 � C1

� �1=2

; C1 ¼ 1 � F

z0

; � ¼ 1

C1

�F�

2�

� �1=2

;

Gðx; �Þ ¼ 1

�ð2�Þ1=2
exp � x2

2�2

� �
: ð13Þ

From equation (12), the amplitude of the function which

describes the transverse part of the focused radiation field is

proportional to a Gaussian with an FWHM (full width at half-

maximum) w ¼ 2:355�.

The Gaussian maximum is shifted by a distance x00 if the

point source is shifted by a distance x0. Let M be a constant

phase factor which does not affect the intensity. Then we

can write

Bðx; x0Þ ¼ Bðx� x00; 0ÞM exp i�
2xx00
�zf

� �
: ð14Þ

Equation (14) shows that the radiation field not only becomes

shifted, but also acquires an additional phase factor. However,

this factor is close to unity because zf � z0 under standard

conditions. As a result jx00j � jx0j, x ’ x0 and jxx00j � �zf .
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We note that numerical results presented in this work were

obtained using equations (1) and (7) for the point source at

the optical axis. The reason is that the source size weakly

affects the diffraction pattern because the diffraction focusing

effect is weak. We used a standard fast Fourier transformation

(FFT) procedure to carry out convolution calculation on the

set of N ¼ 65536 ¼ 216 points within a segment of X =

8192 mm, i.e. with a step d ¼ X=N ¼ 0:125 mm, for high

energy or half as much for low energy.

The function E0ðxÞ ¼ TðxÞPðx; z0Þ was calculated on this set

of points in real space. Then the FFT procedure allowed

calculation of E0ðqÞ on the same set of points but in reciprocal

space with a step � ¼ 2�=X and the same number of points.

Finally, the product E0ðqÞPðq;Z1ÞPCðqÞ was calculated and

its result EðxÞ was acquired by means of the inverse FFT

procedure with respect to the initial set of points. Intensity

within a useful segment was acquired by means of an inter-

polation procedure.

3. Diffraction focusing of an X-ray spherical wave by
one single crystal

As was first shown by Afanasev & Kon (1977a,b) the

diffraction focusing effect reveals itself in pure form only

under the condition of strong absorption when the strongly

absorbing radiation part cannot exit the crystal. However, it is

of interest to understand what would happen if this condition

were not satisfied. As was pointed out above, diffraction

focusing should occur if the crystal thickness t ¼ t0, where

t0 ¼ C0L, C0 ¼ 2j�hj cos �B sin�2ð2�BÞ and L ¼ z1 in our case

according to Fig. 1.

Fig. 2 shows the results of the calculation of intensity

distribution at the detector (x axis) for various values of

crystal thickness t under the condition t ¼ t0. It means that the

distance z1 depends on any value of thickness t according to

z1 ¼ C�1
0 t. These values of t are placed at the left vertical axis

and corresponding values of z1 at the right vertical one. Three

values of photon energy were considered, E = 8 keV (Fig. 2a),

12 keV (Fig. 2b) and 25 keV (Fig. 2c).

The secondary radiation sources were made of planar

silicon CRLs that are composed of parabolic shape bi-concave

elements (chips) having a curvature radius of 6.25 mm at the

apex. These CRLs had six, 14 and 58 chips for energy of 8, 12

and 25 keV, respectively. The focal lengths were approxi-

mately the same but more precisely were equal to 6.78, 6.58

and 6.96 cm, respectively.

Fig. 2(a) presents the results in the case of soft X-rays with

an energy of 8 keV. Within the interval of crystal thickness

200–300 mm the absorption parameter P ¼ �t= cos �B is equal

to values within the interval 3.1–4.7, i.e. the Borrmann effect is

realized but not strongly. Here � is a linear absorption coef-
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Figure 2
Focused beam transverse intensity distribution as a function of crystal
thickness t. Energy of X-ray photons E = 8 keV (a), 12 keV (b) and
25 keV (c). The right-hand axis shows the focusing distance z1 ¼ C�1

0 t.

Figure 3
Variation of the focused beam width (FWHM) �x in the case of one
crystal with crystal thickness t for energy E = 8 keV.

electronic reprint



ficient. Therefore the highly absorbing radiation part is

decreased to zero but the slightly absorbing one stays on a

narrow incidence angle range near the Bragg angle, and the

greater the crystal thickness the smaller the size of this range.

Obviously, the greater the angular range of the output beam

the smaller is the beam transverse size at the focus. The

angular range decreases with crystal thickness. Fig. 3 shows

how the beam FWHM �x depends on crystal thickness in the

case of E = 8 keV. It follows from Figs. 2(a) and 3 that the net

intensity peak (that is free from side oscillations) arises just for

thicknesses that are larger than 250 mm and its FWHM is

equal to 10 mm.

In the hard radiation case absorption is weak, e.g. for E =

25 keV absorption parameter P varies between the values 0.10

and 0.15 at the same thickness interval 200–300 mm. Therefore

both strong and weak absorbed radiation fields exit the crystal

and they interfere. As a result of this interference in the

incident plane-wave case, both the transmitted wave and

the reflected one will oscillate with a period that is equal to the

extinction length but total intensity remains the same.

A spherical incident wave may be considered as some

superposition of various plane waves with different incidence

angles. Therefore, in this case there occur oscillations too, but

their amplitude is weaker than in the previous case. These

oscillations may be seen in Figs. 2(b) and 2(c). The figures

show that the focusing effect is observable for all crystal

thicknesses, but the height and width of peaks as well as the

integral intensity vary periodically with a period that is

approximately equal to the extinction length. The values of

the extinction length are � = 15.1, 24.1 and 52.7 mm for photon

energies E = 8, 12 and 25 keV, respectively.

The FWHM of the focused beam depends weakly on energy

and is approximately equal to 10 mm from the simulations.

Our results demonstrate that in the case of hard radiation it

may be possible to choose a crystal thickness when the

focusing effect is well pronounced despite interference oscil-

lations. Hence the effect may be explored for measuring the

radiation energy spectrum in finite limits. We note once again

that in the case of one crystal the source-to-crystal distance

has to be sufficiently long.

4. Diffraction focusing of an X-ray spherical wave by
two single crystals

Another kind of diffraction focusing was discovered in the

case of weak absorption using two single crystals of equal

thicknesses t1 ¼ t2 ¼ t and a short (even zero) distance

between the source and detector (Indenbom et al., 1974a,b).

Nevertheless, a small distance between the crystals is required

to separate the transmitted and reflected beams in space. This

was assumed in simulations. The secondary source was created

by the same CRL as described in the preceding section. In the

work of Indenbom & Suvorov (1976) this effect was used in an

experiment as a kind of X-ray energy spectrometer. Effective

working of the spectrometer was possible only if the source-to-

detector distance was sufficiently large.

It is interesting to investigate how the beam transverse size

depends on the source-to-detector distance when both crystals

are of the same thickness. Fig. 4 for the first time demonstrates

the results of such calculations. In the case of a Si crystal, (220)

reflection and zero distance, we calculate the transverse size of

the focused beam (FWHM) as �x = 1.41 mm for E = 25 keV

and t = 358 mm, �x = 1.85 mm for E = 25 keV and t = 338 mm,

and �x = 2.01 mm for E = 12 keV and t = 324 mm. These values

are less than the focused beam size in the case of one single

crystal described above.

For weaker reflections the beam size increases because the

focusing angular range decreases. For example, for E = 25 keV

we get the mean value of �x ¼ 4:2 mm for Si (331) and 7.3 mm

for Si (531). The mean values were obtained for the interval of

t from 100 to 1000 mm. However, zero distance is not applic-

able for a spectrometer. Fig. 4 shows how the beam width

(FWHM) increases with increasing source-to-detector

distance z1. One may see that the beam width becomes 8 mm

for hard X-rays and 14 mm for soft X-rays even for a relatively

small distance 100 cm. We note that this beam is not focused

because the focusing condition is not met.

Hence, we may conclude that the fine effect of diffraction

focusing by two single crystals is not effective for a spectro-

meter as was pointed out by Indenbom & Suvorov (1976). On

the other hand, the focusing condition for one single crystal
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Figure 4
Variation of the twice-reflected beam width (FWHM) �x in the case of
two crystals with a source-to-detector distance z1 for Si (220). The black
curve (1) is for E = 25 keV, t= 358 mm. The red curve (2) is for E = 25 keV,
t = 338 mm. The blue curve (3) is for E = 12 keV, t = 324 mm.

Figure 5
Variation of the twice-reflected beam width (FWHM) �x in the case of
two crystals with a crystal thickness t for zero source-to-detector distance,
E = 25 keV. The black curve (1) is for Si (220), the blue curve (2) is for Si
(331).
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demands a large source-to-detector distance that is needed

simultaneously for a spectrometer (Kohn et al., 2018a,b).

It is of interest that zero distance may be easily realized and

investigated by means of a CRL. In order to do this, one has to

focus the beam by a CRL placed at the detector and to put a

system of two single crystals in-between the CRL and the

detector. We have investigated this experimental setup by

means of computer simulations. Fig. 5 shows the dependence

of the focused beam transverse size (FWHM) on the crystal

thickness t for two cases Si (220) and Si (331).

It follows from calculations that beam size oscillates with

increasing distance. The integral intensity oscillates as well.

The origin of these oscillations is the same as discussed in the

preceding section. In the case of weak absorption the plane

wave changes its direction periodically between the trans-

mitted beam and the reflected one due to the extinction effect.

The reflected spherical wave oscillates with approximately the

same period but the amplitude of oscillations is less than for

the plane wave. The focused beam width is smaller the

stronger the reflection.

5. Conclusion

Computer simulations of X-ray spherical wave dynamical

diffraction in one and two single crystals in the Laue case were

performed with the aim of exploring the divergent beam

diffraction focusing effect in an X-ray energy spectrometer as

proposed in the work of Kohn et al. (2013). The spectrometer

may be used for XFEL single-pulse monitoring. The key idea

is to use an X-ray compound refractive lens for creating a

divergent radiation secondary source.

We have found that the reflected beam diffraction focusing

effect in the case of one single crystal may be used in both

cases of strong absorption and medium or even weak

absorption because the focusing effect occurs for a large

source-to-detector distance. On the other hand, the diffraction

focusing effect in the case of two single crystals in the twice-

reflected beam is not effective because it is well pronounced

only for a small source-to-detector distance. The beam trans-

verse size increases with increasing distance.

Nevertheless, a CRL allows one to investigate the diffrac-

tion focusing effect in the case of two single crystals in the

twice-reflected beam even with zero source-to-detector

distance, if the detector is placed at the focus of the CRL.

We have found that, in the case of weak absorption, the

integral intensity as well as the focused beam transverse

size oscillate with increasing crystal thickness due to the

extinction effect.
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