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Abstract—An accurate theory of the new method of two-beam X-ray diffractometry using synchrotron radi-
ation has been developed. In this method, a beam from the source is reflected from two monochromator crys-
tals without changing direction and then is collimated by a slit with a relatively small size. A diffraction reflec-
tion curve (DRC) is obtained by recording the integrated intensity during crystal sample rotation near the
Bragg angle for a certain energy, specified by the monochromator. The theory accurately takes into account
the influence of the source sizes, the distances, and the slit size on the formation of experimental DRC. It is
shown that a practically intrinsic DRC of crystal sample can be obtained even for symmetric reflections from
the monochromator crystals and crystal sample if the Bragg angle in the monochromator crystals exceeds the
Bragg angle in the crystal sample by a factor of 2 or more. The slit size should to be optimized to exclude its
influence on the DRC.
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INTRODUCTION
Laboratory studies of X-ray diffraction in crystals

have been performed for many years in two comple-
mentary schemes, referred to “X-ray section topogra-
phy” and “double-crystal X-ray diffractometry” [1].
An X-ray tube forming a quasi-monochromatic beam
was used as a source. However, the spectral FWHM
(full width at half maximum) of X-ray tube character-
istic radiation is insufficiently small to implement a
necessary temporal coherence. At the same time, a
relatively large emitting surface area corresponds to a
small spatial coherence length.

In the case of X-ray section topography, a coherent
beam is formed by placing a narrow slit before the
crystal [2], which limits the beam spatial sizes. As was
shown in [3], under these conditions a slit becomes a
secondary incoherent source; since this source is small
in size, one can observe (on a photographic film)
large-period interference fringes in the central region
of irradiated area, which are described by the diffrac-
tion theory of spherical waves [4].

In double-crystal X-ray diffractometry, the prob-
lem of forming a coherent beam is solved differently.
The area-integrated intensity after the reflection from
two crystals is measured as a function of the rotation
angle of the second crystal relative to the first one.
First and second crystals are referred to as monochro-
mator and sample, respectively. Using a nondispersive

scheme (in which the Bragg angles in both crystals
coincide) and asymmetric reflection from the mono-
chromator, one can obtain a practically intrinsic dif-
fraction reflection curve (DRC), which coincides with
the theoretical angular dependence of reflection
intensity in the case of diffraction of a plane mono-
chromatic wave [1].

When such experiments are carried out with a syn-
chrotron radiation (SR) source, several new problems
arise. First, the use of a nondispersive scheme and
asymmetric ref lection from monochromator is not
always possible and desirable. At the same time, the
SR spectrum is very wide, and it is necessary to limit it
additionally for the following reason: the first crystal
operates as a prism, converting a frequency spectrum
into an angular spectrum, because the Bragg angle
depends almost linearly on frequency in a narrow fre-
quency range.

Generally, two pairs of crystals in the dispersion
scheme are used to form an almost parallel and mono-
chromatic SR beam (see, e.g., [5, 6]). Two crystals
must be used for each reflection to retain the beam
direction.

In the SR experiment performed in [7], a narrow
slit was installed before the crystal sample in addition
to the symmetric monochromator, consisting of a pair
of crystals. The three-beam coplanar diffraction in
paratellurite (TeO2) was investigated. It is convenient
16
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Fig. 1. Schematic of the experiment: (1) SR beam,
(2) monochromator, (3) slit, (4) crystal sample, and
(5) detector.
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to use SR in such experiments, because the mono-
chromator makes it possible to select any radiation fre-
quency and thus construct a two-dimensional (angle–
frequency) map, in which multibeam interaction can
easily be observed.

However, it turned out that the two-beam DRCs,
both for strong (with small Miller indices) and weak
(with large Miller indices) ref lections, had a FWHM
greatly exceeding that of the intrinsic DRCs; and the
weak-reflection broadening was much larger. Similar
experimental results obtained in [8] with a laboratory
radiation source could readily be modeled within the
existing theory.

Moreover, recent experiments using SR in the
aforementioned scheme [9] of measuring two-beam
DRCs in silicon for different indices of reflections
from monochromator and sample and different slit
sizes showed some interesting features. To explain
them, a more accurate theory should be developed,
which would explicitly take into account all character-
istics of the experimental scheme, including not only
the crystal parameters but also the source size, the dis-
tance to the slit installed before the crystal sample, and
the slit size.

Some attempts to describe theoretically experi-
mental schemes with a possibility of numerical simu-
lation of experiment have been made previously (see,
e.g., [5, 10–12]); however, the versions in which both
the diffraction in the crystal and the diffraction from
the slit must be simultaneously and accurately taken
into account have not been considered.

This study presents a successive theory, which
accurately takes into account for the first time the
source size, the diffraction in the crystals and from the
slit, and the distances between the optical scheme ele-
ments. The calculation was performed from first prin-
ciples, using the methods developed when calculating
phase-contrast images of noncrystalline objects, with
limitations imposed on the spatial and temporal
coherence, and the diffraction of spatially inhomoge-
neous beams (see, e.g., [13–15]).

The general formula turned out to be rather com-
plicated for analysis; however, the use of two approxi-
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mations (small and large slit sizes) made it possible to
derive formulas convenient for numerical calculation;
some physical conclusions can also be drawn based on
these formulas.

STATEMENT OF THE PROBLEM

A schematic diagram of the experiment is shown in
Fig. 1. The experimental setup consists of an SR
source, a double-crystal monochromator, a slit, a
crystal sample, and a detector. SR is known to be gen-
erated when electrons are decelerated in a cloud
during its circular motion. Different electrons release
short wave trains at different instants; therefore, their
radiation is phase-incoherent. A good approximation
of this source is a set of point sources that are located
in a plane perpendicular to the beam direction and
have a white emission spectrum [15].

Different frequencies in the emission spectrum are
incoherent for the same reason. The detector records a
large set of short trains from each source point. They
are time-incoherent, and the measurement time sig-
nificantly exceeds the duration of individual trains
[16]. Therefore, the Maxwell equations must be solved
for a point monochromatic source. In the first stage,
the integrated radiation intensity recorded by the
detector is calculated. Then the intensity is summed
over the spectrum and over point coordinates on the
source, with allowance for the intensity of individual
points.

It is necessary to calculate the dependence of the
integrated intensity on the crystal sample rotation
angle and understand how the monochromator, slit
size, and source angular size affect this intensity. The
slit can be described only in real space relative to the
basic coordinate system; for this reason, the calcula-
tion begins in real space.

Let us consider the wave function of the mono-
chromatic component of radiation with a specified
frequency. We choose an arbitrary point (with a coor-
dinate xs) on the intersection line between the source
cross section and diffraction plane and the basic tra-
jectory (coordinate system), which begins at this point
and goes parallel to the z axis. At the point where it
reaches the surface of the first monochromator crys-
tal, it deviates by the double Bragg angle, correspond-
ing to the basic radiation frequency, and goes in a new
direction to the second crystal. Then it deviates again
by the same angle but to the opposite side and goes
(again parallel to the z axis) to the slit.

In the case of two-beam diffraction, the wave func-
tion of radiation changes only in the diffraction plane,
which is formed by the beam propagation direction
and the reciprocal lattice vector (the latter character-
izes the set of atomic planes this beam reflects off). In
the perpendicular plane, the crystals in no way distort
the beam; hence, this plane can be disregarded.
9
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The amplitude of the X-ray electric field of speci-
fied polarization before the slit can be written in the
form , where K = ω/c = 2π/λ is the
wave number, ω is the radiation frequency, c is the
speed of light, and λ is the wavelength. This amplitude
can be presented as a superposition of plane waves by
writing the function (x,q1) in the form of a Fourier
integral:

(1)

Here, q is the modulus of a component of the wave
vector k0 = K0 + q for a plane wave in the diffraction
plane along a direction perpendicular to the trajectory.
The wave vector component K0 along the trajectory
exactly satisfies the Bragg condition for the basic fre-
quency and yields an additional phase factor. This fac-
tor does not affect the intensity and, therefore, is omit-
ted from here on. The vector q is directed so as to make
an obtuse angle with the reciprocal lattice vector h.

A reflection from crystal transforms the wave vec-
tor k0 into the wave vector kh = Kh + qh, where Kh =
K0 + h, and the vector qh differs from q by a compo-
nent parallel to the normal to the crystal surface,
which is antiparallel to the reciprocal lattice vector in
the case of symmetric Bragg reflection. The modulus
of this component is found from the condition
Khqh = 0 (i.e., qh is perpendicular to Kh). It can be
shown that, in the case of symmetric diffraction, the
modulus of vector qh is equal to q and has a correct direc-
tion. In other words, the plane wave direction is com-
pletely retained under conditions of double reflection.

The wave vector is transformed in this way when
radiation emerges from a crystal because of the refrac-
tion at the crystal boundary. The reason is that the
wave vector modulus cannot change in air, provided
that the radiation frequency remains constant. The
wave vector in the crystal is different: it is equal to  =
Kh + q, and its modulus differs from that of the initial
vector k0. Correspondingly, the parameter character-
izing the deviation from the Bragg condition is α =
((k0 + h)2 – K2)/K2 = 2hq/K2.

Formula (1) directly takes into account that the
Fourier transform of the Fresnel propagator

(2)

depends on the total distance l0 along the basic trajec-
tory. In fact, one should write the product of three
propagators: to the first crystal, between the crystals,
and after the second crystal. However, the explicit
form of function (2) suggests that the product is equal
to the new propagator at the total distance.

The Fresnel propagator is a part of spherical wave
in the paraxial approximation, with the basic plane
wave in the beam direction disregarded. The convolu-
tion of the wave function and propagator describes the
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radiation propagation in air. The diffraction reflection
amplitudes (DRAs) for two monochromator crystals
are also multiplied, which yields a squared DRA for
one crystal, PM(q), because the crystals are identical.
The crystals, being oriented arbitrarily, operate effi-
ciently only at the frequency for which the Bragg angle
corresponds to the basic trajectory passing through the
middle of the slit. This frequency is the basic one.

Let us consider a limited and relatively narrow fre-
quency range in the vicinity of the basic frequency. In
the case of arbitrary deviation of radiation frequency
from the basic value, the Bragg conditions for the
monochromator crystals are not satisfied exactly at
q = 0. However, at a small variation in frequency, the
frequency dependence of the diffraction parameters
can be neglected. Concerning the deviation from the
Bragg condition, it can be compensated for by rotating
the crystals at the same angle: θ1 = q1/K.

To determine this angle, we will write the Bragg
condition in the form 2dsin(θB1 + θ1) = λ + Δλ, where
d is the interplanar spacing in crystal, θB1 is the Bragg
angle for the basic frequency, and λ is the basic wave-
length. Hence, we find approximately that θ1 =
(Δλ/λ)tan θB1 = –(Δω/ω)tan θB1.

The Fresnel propagator should depend on the real
radiation frequency. However, a small relative change
in frequency can be compensated for by a small rela-
tive change in distance, although the result is known to
depend only slightly on a small variation in distance.
In other words, the basic frequency value can be used.
As a result, the change in radiation frequency is effi-
ciently determined by only the parameter q1.

The wave function behind the slit is obtained mul-
tiplying function (1) by the slit transmission function
T(x):

(3)

Here, θ(x) is the Heaviside step function, which is
equal to unity and zero for positive and negative argu-
ments, respectively, and x0 is the slit half width. With a
change in the coordinate xs of radiation source point,
the basic trajectory shifts at the same distance. The slit
center shifts at the same distance in the opposite direc-
tion with respect to it. It is assumed that the basic tra-
jectory passes through the slit center at the coordinate
xs = 0; i.e., the slit position must be optimized with
respect to the source position.

To solve the problem, one should present func-
tion (3) as a superposition of plane waves,

(4)

i.e., calculate the inverse Fourier transform:

(5)

= +
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Finally, the wave function on the detector is deter-
mined by the integral

(6)

where l1 is the distance from the slit to the crystal sam-
ple, l2 is the distance from the crystal sample to the
detector, and PC(q) is the crystal sample DRA.

This formula takes into account two specific fea-
tures of crystal sample reflection. The first is that the
crystal sample can be rotated; therefore its DRA is
counted from the angle θr = qr/K of crystal rotation
with respect to the position at which the reflection is
maximum for the basic frequency. A change in fre-
quency gives rise to an additional rotation angle, in the
same way as it is taken into account in the monochro-
mator: q2 = Kθ2, θ2 = (Δλ/λ)tan θB2.

It is important that q2 = q1M, where M =
tan θB2/tan θB1. The opposite sign of the argument of
the crystal sample DRA function is explained by the
fact that the crystal sample is oriented not parallel to
the monochromator crystals but makes the angle π –
θB1 – θB2 with them. The first monochromator crystal
reflects the horizontal beam upwards, whereas the
crystal sample reflects it downwards.

The second feature is that the reflection in the
crystal sample may be asymmetric; i.e., the normal to
the crystal surface is not antiparallel to the reciprocal
lattice vector. The crystal changes not only the direc-
tion of the beam but also its angular divergence.

It is generally assumed that the DRA argument is
the angular deviation of entering beam: θ = q/K. How-
ever, the angular deviation with respect to the basic
trajectory at the crystal output is θ' = qb/K, where b =
sin θ0/sin θh; θ0,h are acute angles formed by the wave
vectors K0,h with the crystal surface [1]. Note that θ0 +
θh = 2θB. In the symmetric case, θ0 = θh = θB.

The integrated intensity recorded by detector is
measured as a function of crystal rotation angle θr in
an experiment. Correspondingly, we derive the fol-
lowing relation from (6):

(7)

The factor b–1, provided that it differs from unity, is
only a manifestation of the fact that the variables x and
q are not complementary. The coordinate q in the
reciprocal space corresponds to the coordinate xb on
the detector.

Formula (7) is the well-known Parseval rule,
according to which the integrals over intensity in the
real and reciprocal spaces are equal. Since the modu-
lus of the Fresnel propagator Fourier transform is
unity, the crystal‒detector distance does not affect the
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×
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integrated intensity. This is a consequence of the gen-
eral law of energy conservation.

To perform a comparison with experiment, it is
necessary to calculate the integral of this function over
the source size and emission spectrum. As a result, we
arrive at the function of crystal rotation angle, which is
generally referred to as DRC. It is determined by the
formula

(8)

where GB(xs) is the function of source intensity at the
point xs, which is generally approximated by a Gauss-
ian. In the general case, the problem appears to be
fairly complex; however, there are limiting cases, in
which simpler approximate formula can be obtained.

For simplicity, we will omit below the factors that
do not affect the DRC shape. Concerning the maxi-
mum value, theoretical calculations are generally per-
formed using a normalization constant that yields the
intrinsic DRC of crystal sample in the most favorable
case. When comparing with experiment, the constant
factor is a fitting parameter.

INFLUENCE OF THE SLIT SIZE ON DRC
To calculate the function A1(q,xs,q1), let us substi-

tute formulas (1) and (3) into (5) and shift the origin of
coordinates in the integral over x. As a result, we
arrive at

(9)

The integrand contains a rapidly oscillating expo-
nential function. To estimate approximately the inte-
gral, we will apply the stationary-phase method for the
integral over q' in the integral over x.

The exponential argument (phase) and the station-
ary-phase point are given, respectively, by the formulas

(10)

where

(11)

The stationary-phase method implies integration
of the exponential, whereas the other parts of the inte-
grand are taken outside the integral at the stationary-
phase point.

As a result, we have an approximate formula
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The phase factor is omitted here (because we are inter-
ested in only the modulus of this expression), as well as
the constant factor, which is independent of the func-
tion arguments.

In the general case, one must calculate integral (12),
which depends efficiently on two independent argu-
ments: (qs – q1) and (q – qs). To obtain a simpler solu-
tion, we will consider two limiting cases.

In the first case, the slit has a very small size. The
variable qx in the argument of function  and the
term quadratic in x in the exponential argument can be
neglected because of their smallness. As a result, the
formula takes a simpler form:

(13)

where

(14)

The second case is a slit of very large size. The pres-
ence of a term quadratic in the coordinate x in the
exponential becomes important; it indicates that the
slit does not contribute entirely to the integral: some of
its regions are more efficient than others. We apply
again the stationary-phase approximation, but now to
the integral over x. The stationary-phase point coordi-
nate is x = r2(q – qs). Correspondingly, qx = q – qs at
this point; having made a substitution, we arrive at a
simpler formula:

(15)

The analysis of theoretical formulas is significantly
simplified in both limiting cases. Concerning the
range of their applicability, an evident condition for
the first case is the inequality x0 < r. Its physical mean-
ing is that the slit size should to be sufficiently small to
neglect the curvature of the constant-phase surface of
spherical wave in the slit region. In other words, the
incident radiation before the slit is very similar to a
plane wave, whose direction depends on the point
source coordinate xs.

Obviously, the inverse inequality x0 @ r must be
valid in the second limiting case. Concerning the con-
ditions for the width of the intrinsic DRCs of the
monochromator and crystal sample, this problem is
more complex. It can be solved either performing
numerical experiments or comparing with the results
of real experiments.

LIMITING CASE OF SMALL-SIZE SLIT

In this case, we obtain the following approximation
for experimental DRC by passing from integration
variable xs to variable qs:

2
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CR
(16)

where

(17)

It is convenient to calculate a triple integral using
Fourier integrals of the functions

(18)

Substituting (18) into (16), we obtain a sevenfold
integral, in which three integrals over q are three delta
functions, which take off three more integrals over x;
as a result, we have

(19)

This result is interesting from two points of view.
First, it significantly shortens the calculation time,
because there are efficient procedures for calculating
numerically Fourier transforms. Second, one can
draw (directly from this formula) some physical con-
clusions about the influence of different elements of
experimental scheme on the result.

In the case of nondispersive scheme, where M = 1,
the consideration of the source sizes is reduced to

application of a constant factor . In other words,
the source size affects in no way the DRC shape. When
M only slightly differs from unity, the curve of the
source function is wide, therefore, the influence of the
source is weak. If the difference is large, the source
influence may be strong. Approximating the source
intensity function GB(qs) by a Gaussian

(20)

one can calculate analytically ; the result is

(21)

It also follows from the obtained formula that, if
the curve  has a minimum FWHM among all
four functions, an almost intrinsic DRC is obtained
for the crystal sample as a result. If  has a mini-
mum FWHM, the experiment will yield the source
angular size. Similarly, in the case of a very narrow slit,
an experiment may yield the slit angular size. One can
also obtain an almost intrinsic DRC of the monochro-
mator.
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The intrinsic DRCs of the monochromator and
sample often have comparable widths, and the width
of slit DRC may have either smaller or larger; a larger
width is observed for a narrow slit. The slit angular
width is defined as θS = λ/D, where D = 2x0 is the slit
width. This result can be obtained directly from for-
mula (14). At λ = 10–10 m and D = 50 μm, θS = 2 μrad.
Even such a narrow slit should not lead to strong
broadening of experimental DRC.

The above-considered approximation corresponds
to the geometrical optics approximation for crystals. It
is often used when analyzing the diffraction of diver-
gent radiation in crystals, including deformed ones.
Slits are often described in the same way.

Note that the function  also has an analytical
form:

(22)

Formula (22) can easily be derived taking into
account that this function is a convolution of two slit
functions θ(x0 – |x|). In other words, it is equal to the
overlap area of two rectangles of unit height and width
2x0. This function amounts to 2x0 in the case of com-
plete overlap, is zero (no overlap) when the rectangles
are spaced by a distance of 2x0 or larger, and changes
linearly between points 0 and 2x0.

LIMITING CASE OF LARGE-SIZE SLIT
In this case, we obtain the following approximation

for experimental DRC:

(23)

where

(24)
As in the previous section, this triple integral can be

reduced (by the Fourier transform method) to a single
integral in the form

(25)

The most important conclusion that follows from
formula (25) is that the DRC shape is independent of
the source sizes and slit size in the nondispersive
scheme (where M = 1). It is determined by convolu-
tion of the monochromator and crystal sample DRCs.
This property can easily be derived directly from for-
mula (23) by replacing the variable q1 with q – q1 in the
integral over q1. The functions GM and GC cease to
depend on q, and the integrals over qs and q are trans-
formed into factors independent of qr.
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It is of interest that the same conclusion follows
from the formula presented in the previous section for
a large-size slit. The source size again does not affect
the DRC shape, and a wide slit leads to a large FWHM
of the function  in comparison with the FWHMs
of the monochromator and crystal sample functions,

 and , respectively.
However, the situation changes in the dispersion

scheme, where M differs from unity. Now one must
take into account the function , which has the
form

(26)

The FWHM of this function is πr2/x0. It may
become arbitrarily small with an increase in the slit
width. Correspondingly, the DRC FWHM will be
arbitrarily large and determined by only the angular
divergence of radiation within a wide slit. In this case,
the crystals affect only slightly the result.

SPECIFIC EXAMPLES
When carrying out numerical calculations based on

formulas (19) and (25), it is reasonable to use the func-
tions , , , and  in normaliza-
tion, when they are equal to unity for x = 0. In this
case, they in no way distort the intrinsic DRC of crys-
tal sample if their FWHM is very large in comparison
with the intrinsic DRC. The main question of the the-
ory is how these functions distort the shape of the
intrinsic DRC of crystal sample.

Specific examples were calculated for the parame-
ters of the “X-Ray Crystallography and Physical
Materials Science” beamline of the Kurchatov SR
source [17]: l0 = 13 m; σs = Kσx/l0, where σx = 54 μm
is a parameter of the Gaussian that models the source
transverse size in real space; X-ray photon energy E =
12 keV; and K = 6.0812 × 104 μm–1.

The computer program is written in ACL [18]. The
DRAs PM(q) and PC(q) were calculated using a stan-
dard module for the general case of multilayer crystal,
based on formulas [19]. One layer of sufficiently large
thickness was used. The most interesting situation
arises for the dispersion scheme with M < 1. Let us
consider a silicon monochromator with a symmetric
reflection 333 and a silicon crystal sample with a sym-
metric reflection 111. In this case, tan θB1 = 29.621°,
tan θB2 = 9.483°, and M = 0.2938.

Fourier integrals were calculated by the fast Fourier
transform (FFT) method on grids with a constant step
and number of points 216 = 65536. The range of varia-
tion in argument x was X = 512 μm. In correspondence
with the FFT conditions, the grid step for argument q
was 2π/X, with the same number of points. In fact, the
functions change significantly in smaller intervals;
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0
2
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Fig. 2. Plots of the functions the convolution with which
forms the experimental DRC: (a) the complex function

, the Fourier integral of which is equal to the intrin-
sic DRC of crystal sample ((1) real and (2) imaginary
parts); (b) the complex function , which describes
the influence of the monochromator; and (c) the functions
(1) , (2) , and (3) .

0

0.2

0.4

0.6

0.8

1.0

–30 –20 –10 0 10 20 30
x, μm

(c)

1

2

3

0

0.2

0.4

0.6

0.8

1.0 (b)

1

2

0

0.05

0.10

0.15

0.20

0.25 (а)

1

2

( )'CG x

( )'MG Mx

−([1 ] )'BG M x ( )'SG x −([1 ] )'TG M x

Fig. 3. Plots of the (1) intrinsic and (2) experimental DRCs
for the reflections (a) 111 and (b) 333 in a Si sample (Si
monochromator, 333).
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therefore, not all points of grid but only its central part
was used for plots.

Figure 2 shows the functions , ,
, , and  for the

aforementioned case and a slit width of 50 μm. The
first two functions are complex and have a small imag-
inary part, because the corresponding Fourier trans-
forms are asymmetric. They are shown in Figs. 2a and
2b by two curves, corresponding to the real and imag-
inary parts (curves 1 and 2, respectively). The other
three functions, enumerated as 1, 2, and 3, are pre-
sented in Fig. 2c

The first three functions are independent of the slit
width; they are used in the same way in both approxi-

' ( )CG x ' ( )MG Mx
−' ([1 ] )BG M x ' ( )SG x −' ([1 ] )TG M x
CR
mations for slits of small and large sizes. One can easily
see that the function  has the smallest FWHM,
whereas the functions  and ,
although differing in shape, distort only slightly the
intrinsic DRC of the crystal sample. Therefore, it is no
surprise that the simulation of experimental DRC is
practically the same in both approximations.

The calculation result is shown in Fig. 3a. Here,
curve 1 corresponds to the intrinsic DRC of the crystal
sample in the approximation of incident plane mono-
chromatic wave, while curve 2 simulates the experi-
mental result. In correspondence with the chosen nor-
malization, the areas under the curves are equal. The
result is shown for the approximation of small-size slit
(the curves plotted in both approximations almost
coincides and can hardly be distinguished).

A specific feature of these two approximations is
that the slit distorts the experimental DRC only when
has very small sizes (due to the diffraction of radiation
from it, when the slit angular width θS = λ/D exceeds
the angular width of the intrinsic DRC of crystal sam-
ple). The angular width of large-size slit is small, and
this slit does not distort the result.

At the same time, the approximation of large-size
slit takes into account its angular size, related to the
divergence of the beam incident on it. The initial
divergence is not limited, while the slit limits it (the
smaller the slit size, the stronger this limitation is). As

' ( )CG x
' ( )SG x −' ([1 ] )TG M x
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a calculation shows, there is a range of sizes within
which the slit does not distort the experimental DRC.

One can easily find that a slit of size D = 1 μm has
an angular width λ/D = 100 μrad due to the diffrac-
tion. This value exceeds the angular width of intrinsic
DRC; i.e., the width of the experimental DRC is
approximately the same, and the second derivative
differs from zero at the center. At the same time, a slit
of size D = 2 mm has an angular width D/l0 = 154 μrad.
With allowance for the factor (1 – M), the angular
FWHM of experimental DRC is 109 μrad or 0.0062°,
and the second derivative at the center is close to zero.
These estimates are in complete agreement with the
results of numerical calculations.

Let us consider the opposite situation: a mono-
chromator with a 111 reflection and a crystal sample
with a 333 reflection. In this case, the parameter M =
3.404, and the Bragg angles have the same values as in
the previous case, but only interchange. Under these
conditions, the FWHM of the function  is larger,
the FWHM of the function  is many times
smaller, and the convolution result is determined by
only the monochromator.

The calculation result is shown in Fig. 3b. As previ-
ously, curve 1 corresponds to the intrinsic DRC, and
curve 2 simulates the experimental DRC. It is of inter-
est that the experimental curve, although being very
strongly broadened, still remains asymmetric. This
asymmetry is explained by the fact that this curve is in
fact the broadened DRC of the monochromator.
However, the normalization is chosen so as to equalize
the areas under both curves; therefore, the maximum
in the curve is smaller than in the monochromator
DRC.

CONCLUSIONS
It was theoretically shown that the new scheme of

two-beam X-ray diffraction using synchrotron radia-
tion, composed of a monochromator with symmetric
reflections, a narrow slit, and a crystal sample, makes
it possible to obtain almost intrinsic DRC of crystal
sample. To this end, one must apply a monochroma-
tor with reflections at a large Bragg angle, exceeding
the Bragg angle for the crystal sample by a factor of 2
or more.

In this case, the slit size should be optimized,
because at a very small size possible X-ray diffraction
from the slit increases the beam angular divergence,
while at a large slit size the angular divergence of the
initial beam may be anomalously large. The optimal
value for a silicon crystal is 50 μm.

In the opposite case, the monochromator does not
provide desired beam collimation and monochromati-
zation, and the DRC of crystal sample is strongly
broadened; the situation cannot be repaired by choos-
ing an appropriate slit size. Thus, this scheme is valid
for studying reflections with high Miller indices only

when using a monochromator with reflections having
very high indices.

The theory takes into account all parameters of the
experimental scheme, including the source size, the
distances between elements, and the slit size. It made
it possible to explain the specific features of the exper-
imental results obtained in [7, 9].
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