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The results of computer simulations of X-ray spherical wave dynamical Laue
diffraction in a perfect crystal of a special shape are presented. Namely, the
crystal has a triangular cutout on the exit surface with the angle 2θ less than 2θB,
where θB is the Bragg angle. The effect of a strong increase in the intensity near
the triangular cutout is found in the case of a thick crystal. It is demonstrated that
the X-ray beam intensity can be increased up to seven times under the conditions
of the Borrmann effect. The fast Fourier transform (FFT) algorithm is used at the
first step where simulations of spherical wave Laue diffraction in a perfect crystal
slab are performed. Thus, the X-ray fields are obtained in front of the triangular
cutout which are used as boundary conditions for the second step. At the second
step, a direct numerical solution of the Takagi equations is used. The effect of a
strong increase in intensity is observed for all source-to-crystal distances includ-
ing the distance of diffraction focusing. This effect is explained in terms of a
crystal propagator.

1. Introduction

X-ray topography is a tool for imaging inhomogeneous coherent
intensity distribution due to the diffraction of X-rays in a crystal
lattice. In the Laue case, this technique begins from the work by
Kato and Lang,[1] where an X-ray beam from a laboratory source
was restricted by a narrow slit. Soon Kato[2] developed the theory
of X-ray spherical wave diffraction, and Takagi[3] proposed a set of
two differential equations that allows one to calculate inhomoge-
neous wave-field amplitudes inside a crystal in the general case.

Later on, a solution of the Takagi equations in the case of
a perfect single crystal and an inhomogeneous incident wave
or an uneven surface profile was derived as a convolution of
the incident wave and the crystal propagator in a series of
works.[4–10] The crystal propagator has an analytical form through
the Bessel functions. In the case of crystal lattice distortion, an

effective numerical method for a solution
of the Takagi equations was proposed
(see, for example, previous study[11]).

The theory of X-ray spherical wave
diffraction was developed further in the
work by Afanas’ev and Kohn,[12,13] where
the effect of diffraction focusing was
discovered under the conditions of a large
source-to-detector distance. Numerous works
were performed with the aim of imaging
crystal lattice defects such as dislocations,
stacking faults, and so on, both experimen-
tally and theoretically (see references in the
book[14]).

In several works, the structure of inho-
mogeneous wave fields in a perfect single
crystal of special shape was investigated.
In this case, both analytical and numerical
approaches can be used. Crystals with
a cross-section in the scattering plane

such as a parallelepiped or a cylinder were considered in the
studies.[15–20] Recently such problems have been investigated
again.[21,22]

In this work, we investigate theoretically a problem of X-ray
spherical wave diffraction in a thick perfect single crystal having
the shape of a slab with a triangular cutout on the exit surface.
The method of computer simulations is used. Note that such a
shape of a crystal was preliminarily investigated in the early work
by Afanas’ev and Kohn[23] by means of analytical approach for a
plane incident wave. The motivation for that work was an etch-pit
visibility problem seen on the X-ray topographs. The effect of
interference with a strong increase in the intensity was discov-
ered. In this work, we analyze this effect in more detail and
in the general case of an incident spherical wave. Our results
can stimulate the experimental studies of a strong X-ray interfer-
ence effect.

In the next section, the formulation of a problem and the
method of computer simulations are presented. The results
and discussion are presented in the subsequent sections.

2. Problem Formulation and Computer
Simulation Method

We consider an experimental setup shown in Figure 1. The X-ray
monochromatic spherical wave from the point source located at
the distance L from the crystal has a finite angular divergence.
The crystal shape is a slab of the thickness t with a cutout of
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the triangular form of the height t0 on the exit surface. In a
synchrotron radiation case, each point of the transverse section
of a real source can be considered as being independent of other
points due to a spontaneous origin of radiation impulses (wave
trains) created by separate electrons inside the bunch. Therefore,
a point source only creates coherent radiation. The radiation is
monochromated by a standard Si double-crystal monochromator
(not shown).

The triangular cutout is a reason of spatial inhomogeneity of
beam intensity measured by two detectors for both the transmit-
ted and reflected beams. They are located at some distance from
the crystal for eliminating beam interference. For the sake of
simplicity, we will consider the intensity of these beams on
the exit surface of the crystal. The task can be divided into
two steps.

At the first step, we consider diffraction of an X-ray monochro-
matic spherical wave in the crystal slab of the thickness
t1 ¼ t� t0. In this case, the intensity inhomogeneity along the
crystal surface (the x axis) arises from the incident spherical wave
only. It is convenient to solve the task by means of Fourier trans-
formation. At this point, the z and x coordinates are counted
along and normal to the direction from the source to the crystal.
The x projection of the incident wave can be described within
paraxial approximation as the modified Fresnel propagator
introduced by Kohn.[24]

Pðx, LÞ ¼ ðiλLÞ�1=2 exp
�
iπ
x2

λL
� e1

x2

x2r

�
(1)

where λ is the radiation wave length, e1 ¼ ln 2=2, 2xr ¼ Lαd is
the beam intensity FWHM (full width at half maximum) at
the distance L, and αd is the beam angular divergence. The
Fourier image of this function is equal to

Prðq, LÞ ¼ C�1=2
r exp

�
�i

λL
4πCr

q2
�

(2)

where Cr ¼ 1þ iσ, σ ¼ λLe1=πx2r .
We consider the normalized incident wave as

EiðxÞ ¼ ðλLÞ1=2 expðiKzÞPðx, LÞ, (3)

where K ¼ 2π=λ. The incident wave can be represented as a
superposition of plane waves by means of the Fourier integral

EiðxÞ ¼ ðλLÞ1=2
Z

dq
2π

expðiKzþ iqxÞPrðq, LÞ: (4)

We note that jqj � K . Therefore, q ¼ Kθ describes a small
angular divergence of the incident wave. The integrand is a plane
wave with the wave vector k0 ¼ ðq, 0,KÞ. We assume that the
crystal is oriented near the Bragg angle for symmetrical Laue dif-
fraction with the reciprocal lattice vector h. It is well known that
the transmitted wave direction (the wave vector) stays unchanged
due to plane wave diffraction in the crystal slab having a perfect
crystal lattice.[14,25]

Therefore, we can write the following equation for the trans-
mitted wave

E0ðx, t1Þ ¼ ðλLÞ1=2
Z

dq
2π

expðiqxÞPrðq, LÞA0ðq, t1Þ (5)

Here and below we omit the factor expðiKzÞ because it does
not influence the intensity. The transmission amplitude is well
known[14,25,26] and can be written in the form convenient for
calculations

A0ðq, tÞ ¼
expðM þGÞ þ x21 expðM � GÞ

1þ x21
(6)

Here

M ¼ i½X0 þ αq�
t

2γ0
, G ¼ ig

t
2γ0

, g ¼ ðα2q þ X2Þ1=2,

x1 ¼
αq þ g
X

, X0 ¼ Kχ0, X ¼ Kðχhχ�hÞ1=2,
αq ¼ ðq� q0Þ sinð2θBÞ, γ0 ¼ cosðθBÞ

(7)

The parameter g has a positive imaginary part; χ0, χh, and χ�h

are the Fourier components of crystal susceptibility for the recip-
rocal lattice vectors 0, h, and �h; θB is the Bragg angle; the
parameter q0 ¼ Kθ0 describes a possible deviation of the crystal
orientation from the Bragg position.

The similar equation can be written for the reflected wave with
the base wave vector k0 þ h

Ehðx, t1Þ ¼ ðλLÞ1=2
Z

dq
2π

expðiqxÞPrðq, LÞAhðq, t1Þ (8)

where

Ahðq, tÞ ¼
Xh

2g
½expðM þ GÞ � expðM �GÞ� (9)

Here Xh ¼ Kχh.
At the second step, we consider diffraction of the X-ray mono-

chromatic inhomogeneous wave inside the crystal slab having an
inhomogeneous structure along the crystal surface. At this point,
the x and z coordinates are counted along and normal to the
crystal surface. This task has to be solved by means of the
Takagi equations[3]

2
i
∂E0

∂s0
¼ X0E0 þ X�h expðihuÞEh (10)

2
i
∂Eh

∂sh
¼ ½X0 þ 2αq�Eh þ Xh expð�ihuÞE0 (11)

Figure 1. Experimental setup on which computer simulations are
based. Here S is the X-ray source, T is the transmitted beam, and R is
the reflected beam.
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Here X�h ¼ Kχ�h, s0 and sh are the coordinates along
the transmitted and reflected beams, u is the displacement
vector of possible deformation of the crystal lattice, αq ¼
K½θ � θ0� sinð2θBÞ where θ and θ0 are the deviations of the inci-
dent wave direction and crystal orientation from the Bragg position.

It is convenient to make the substitution Eh ¼ E0
h expð�ihuÞ

and write the equations in the other form

p
2
∂E0

∂s0
¼ A0E0 þ AE0

h,
q
2
∂E0

h

∂sh
¼ BE0 þ ½B0 þW�E0

h (12)

where

A0 ¼ iX0p=4, A ¼ iX�hp=4, B0 ¼ iX0q=4,

B ¼ iXhq=4, W ¼ i
�
αq þ

dhu
dsh

�
q
2

(13)

In this work, we are interested in the task where u is equal to
zero (the perfect crystal), but the parameters χ0, χh, and χ�h are
not constant, i. e., they depend on the coordinates inside the crys-
tal. Here p and q are the parameters which are determined during
an approximate numerical solution of the Takagi equation.
Namely, we consider a crystal slab with the surface parallel to
the x axis. We divide it into the layers of the thickness dz.
Then p and q are the distances inside the layer along the trans-
mitted and reflected beams. In the case of symmetrical Laue
diffraction, p ¼ q ¼ dz=γ0.

We need to replace derivatives by difference ratios for numer-
ical solution of Equation (12). We will use the method which was
proposed by Epelboin,[11] where the derivatives are calculated as

p
df ðx � p=2Þ

dx
¼ f ðxÞ � f ðx � pÞ (14)

In addition, the function values between the layer boundaries
are calculated approximately as

2f ðx � p=2Þ ¼ f ðxÞ þ f ðx � pÞ (15)

We apply Equation (14) and (15) for Equation (12) and obtain a
set of linear equations for the amplitudes of the transmitted and
reflected waves at a set of points with the period dz along the
z axis and the period dx ¼ 2dz tan θB along the x axis.

The solution of these equations EðnewÞ
2 can be calculated as a

product of the Matrix M2,4 and the vector EðoldÞ
4 , namely,

EðnewÞ
2 ¼ M2,4 � EðoldÞ

4 (16)

where

EðnewÞ
2 ¼ ½E0ðs0, shÞ, E0

hðs0, shÞ� (17)

EðoldÞ
4 ¼ ½E0ðs�0 , shÞ,E0

hðs�0 , shÞ,E0ðs0, s�h Þ, E0
hðs0, s�h Þ� (18)

M2,4 ¼ D�1

0
@AðþÞ

0 Wð�Þ
1 ,AW ð�Þ

1 ,AB,AWðþÞ
1

AðþÞ
0 B,AB,Að�Þ

0 B,Að�Þ
0 W ðþÞ

1

1
A (19)

Here s�0 ¼ s0 � p, s�h ¼ sh � q,

Að�Þ
0 ¼ 1� A0, W

ð�Þ
1 ¼ 1�W1,

W1 ¼ W þ B0, D ¼ Að�Þ
0 W ð�Þ

1 � AB
(20)

We start with the entrance boundary of the first layer where
the amplitudes E0 and E0

h are known from the boundary condi-
tions and apply the product EðnewÞ

2 ¼ M2,4 � EðoldÞ
4 to obtain the

values at the exit boundary which is the entrance boundary for
the next layer. Thus, we obtain the amplitudes at all points along
the x and z axes.

Note that the number of points along the x axis decreases by
one in each step. Therefore, to obtain the solution inside the
region of size Nxdx along the x axis, we need to know the bound-
ary conditions inside a region of the size ðNx þ NzÞdx ,and the
thickness of the second part of the sample will be t0 ¼ Nzdz
(see Figure 2). Here Nx is the number of periods on the exit sur-
face of the crystal, and Nz is the number of layers.

If the crystal contains amorphous subareas inside the consid-
ered area, the matrix M2,4 in such subareas has the form

M2,4 ¼ D�1

0
@AðþÞ

1 Bð�Þ
1 , 0, 0, 0

0, 0, 0,Að�Þ
1 BðþÞ

1

1
A (21)

where

Að�Þ
1 ¼ 1� A1, B

ð�Þ
1 ¼ 1� B1,

A1 ¼ iX1p=4, B1 ¼ iX1q=4, D ¼ Að�Þ
1 Bð�Þ

1

(22)

and X1 ¼ Kχ1, χ1 is the susceptibility of the amorphous area
which can have another chemical composition. Inside the empty
space χ1 ¼ 0, and the matrix M2,4 has a very simple form. In the
symmetrical case B1 ¼ A1.

In such an approach, the results of the first step form the
boundary conditions for the second step. However, the sets of
points in the first and second steps are different. Therefore,
we need to interpolate the first set of points to the second
one. In addition, it is necessary to consider the Bragg angle
between the x axes at the first and second steps.

All equations were written for sigma polarization when the
electric field vectors of the transmitted and reflected waves are
directed normal to the scattering plane. Such a situation is typical
for the experiments with synchrotron radiation. In the case of pi
polarization, the parameters χh and χ�h have to be multiplied by
the factor cosð2θBÞ.

For a computer experiment, we have chosen a Si crystal, the
photon energy E ¼ 8.048 keV (CuKα characteristic radiation),

Figure 2. Set of points for a numerical solution of the Takagi equations.
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and the 220 reflection. In this case, θB¼ 23.651∘. The parameters
χ0, χh, and χ�h were calculated by means of the online computer
program created by Kohn.[27] Amplitudes in Equation (6) and (9)
were normalized to the unit sum of the transmitted and reflected
intensities at the Bragg angle when αq ¼ 0.

Such normalization is useful for the large distance L when the
incident spherical wave close to a plane wave near the triangular
cutout. It is not the case for a small distance when the intensity at
the detector becomes very small for a thick crystal. The reason for
this is that a thick crystal selects only a small part of the angular
width of the incident wave near the Bragg angle where the
Borrmann effect takes place.

Fourier integrals in Equation (5) and (8) were calculated by
means of the FFT (Fast Fourier Transform) procedure which
was incorporated in the ACL programming language [28].
Fortran code of this procedure has been known since the middle
of the last century as a part of the NAG library. We use a set of
points with the number N ¼ 16 384. We choose the step dx ,
whereas dq ¼ Kdθ ¼ 2π=ðNdxÞ and the calculation region in
the reciprocal space Ndq should be large enough the integrand
to be zero out of this region.

Note that amplitude in Equation (6) equals expðiX 0t=2γ0Þ in
the limit jqj ! ∞, and it is not zero for a thin crystal layer. That is
why it is useful to consider finite angular divergence of the inci-
dent wave, i.e., the finite parameter αd in Equation (1) and (2).
In real experiments the angular divergence is always finite.

It is important to control a position of the Borrmann fan in
space. Fourier integrals in Equation (5) and (8) give nonzero val-
ues only for x< 0, because the point x ¼ 0 corresponds to all rays
out of the Bragg diffraction region. It is convenient to shift the
origin of the x axis so that the point x ¼ 0 corresponds to the
middle point of the Borrmann fan for the small distance L.
Additional shift on the distance xs ¼ �Lθ0 should be performed
to correct the Bragg direction on the crystal.

A proper choice of the beam center is very important for a
thick crystal layer because only the center of the Borrmann
fan corresponds to rays in the center of dispersion surface of
two-beam diffraction for which the anomalous transmission
effect takes place. Such a shift may be performed by means of
multiplicating the integrand by the factor expðiq½Lθ0 � t sin θB�Þ.

The computer program was written in the ACL programming
language.[28] This language is interpreted by the program written
in Java. It allows a user to quickly create the graphics and anima-
tions of numerical results.

3. Strong Intensity Increase Near the Triangular
Cutout in a Thick Crystal

If the distance L is very large, for example, 25 000m, the incident
spherical wave is close to the plane wave. We consider the crystal
layer of t1 ¼ 800 μm before the cutout and a height of the cutout
t0 ¼ 150 μm. The solution of the Takagi equations were obtained
on a set of points with dz ¼ 0.05 μm,Nz ¼ 3000, andNx ¼ 3000.
The angle of the cutout was θ¼ 14.723∘. In this case,
tanðθÞ= tanðθBÞ ¼ 0:6.

The computer simulation results are shown in Figure 3.
Note that normal absorption in the first layer is very large
(μ0t1=γ0 ¼ 12.3), whereas the anomalous absorption is acceptable

(μat1=γ0 ¼ 0.38). Here, μ0 ¼ ImðX0Þ, μa ¼ ImðX0 � XhÞ. There-
fore, only the weakly absorbing wave reaches the cutout, and the
extinction effect is absent. The intensity is homogeneous along
the x axis because the incident wave is very close to a plane wave,
and it depends very weakly on the z coordinate because the inter-
ference is absent.

The cutout disturbs the wave inside the Borrmann fan with
the angle 2θB (i.e., inside the triangle ade in Figure 4). We
can distinguish three areas: A) the area of cutout (triangle
bce); B) the left boundary region along the reflected beam
(R-beam) direction (triangle abe); C) the right boundary region
along the transmitted beam (T-beam) direction (triangle cde).
The pictures for the R-beam and T-beam is shown in the
Figure 3 as R-picture and T-picture. They are fully antisymmetric.

Inside the region (A), we find the interference fringes with a
small amplitude and a long period in the direction of the T-beam
in the R-picture, and the R-beam in the T-picture. The most inter-
esting is the effect of a strong intensity increase in the region (B)
in the R-picture and in the region (C) in the T-picture. The
maximum intensity in these regions is up to seven times higher
compared with the intensity in the normal region.

To understand what happens, we need to get more informa-
tion. Let us consider another case where the cutout is filled with a
very strongly absorbing material that prevents passage of radia-
tion through the cutout from one side region to another. The
results of calculation in such a case are shown in Figure 5.
We use the same intensity scale for the sake of comparison with
Figure 3.

-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
800

820
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Figure 3. Intensity distribution in the area of an empty triangular cutout
on the exit crystal surface.

Figure 4. Borrmann fan with a triangular cutout. See text for details.
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In this case, the maximum intensity is two times smaller than
that in Figure 3. In addition, the interference fringes are parallel
to the boundary of the cutout. Inside the cutout, the intensity is zero
due to strong absorption. It looks like in this case the interference
of two rays takes place and the maximum intensity is slightly less
than 4. In the case of Figure 3, the interference of three rays
occurs and the maximum intensity is slightly less than 9. The third
ray goes from one side to the other one through the empty space.

The results of Figure 3 were obtained previously in the work[23]

in the case of an incident plane wave by means of applying the
crystal propagator. In that work, the corrections to the wave
amplitude in an undisturbed crystal were considered, namely,

ekðrÞ ¼ ðEkðrÞ � AkðzÞÞF�1
0 ðzÞ, k ¼ 0, h, (23)

where EkðrÞ are the solutions of Takagi Equation (10) and (11),
AkðzÞ are the solutions for the undisturbed crystal. If αq ¼ 0, in
the case of a thick crystal, the approximation

AkðzÞ ¼ CkF0ðzÞF�1
h ðzÞ, F0,hðzÞ ¼ expðiX 0,hz=2γ0Þ (24)

is valid, as it follows from Equation (6) and (9). Here Ck is the
constant.

Let us consider the region (B) in the R-picture. We are inter-
ested in ehðηÞ on the line z ¼ t where η ¼ x0 � x, x0 is the
coordinate at the cutout boundary (the point b in Figure 4).
We can write the integral equation[23] as follows

ehðηÞ ¼ ehðξηÞ �
1
4
b2εη

Z
ξη

0
dξehðξÞ

�Uðb½ðξη � ξÞðξη � ξþ εηÞ�1=2Þ
(25)

where

UðxÞ ¼ 2
J1ðxÞ
x

, ξη ¼ ξ0 � ηD, ξ0 ¼
t0
γ
,

D ¼ γ0
sinðθB � θÞ , ε ¼ Dþ γ0

sinðθB þ θÞ , γ ¼ cosðθÞ
(26)

Here, J1ðxÞ is the Bessel function of the first order; the integral
is calculated along the left boundary of the triangular cutout
from t1 to zξ ¼ t1 þ γξ

b ¼ X
½sinðθB � θÞ sinðθB þ θÞ�1=2

sinð2θBÞ
(27)

Derivation of Equation (25) is done in Appendix.
In the general case, the function ehðξÞ is not known. However,

it is not the case if we consider a strong absorber as in Figure 5.
In this case, EhðξÞ ¼ 0 and

ehðξÞ ¼ �AhðzξÞF�1
0 ðzξÞ ¼ �ChF�1

h ðzξÞ (28)

Let us consider the ratio RhðηÞ ¼ EhðηÞ=AhðtÞ. Considering
Equation (25) and (28), we obtain

RhðηÞ ¼ 1� FhðγDηÞ þ
1
4
b2εη

Z
ξη

0
dξFhðt0 � γξÞ

�Uðb½ðξη � ξÞðξη � ξþ εηÞ�1=2Þ
(29)

We change an integration variable by the relation ξ ¼ ξη � ξ1
without a change in the limits and obtain finally

RhðηÞ ¼ 1� FhðγDηÞGðηÞ (30)

where

GðηÞ ¼ 1� 1
4
b2εη

Z
ξη

0
dξ1Fhðγξ1ÞU

�
b½ξ1ðξ1 þ εηÞ�1=2

�
(31)

A peculiarity of Equation (30) is that it contains two terms, the
second of which is complex valued. Therefore, the square mod-
ulus may demonstrate interference fringes with the constant
period. We also note that the dependence on t0 is defined by only
the upper limit of integral in Equation (31). It is easy to under-
stand that this dependence will be apparent only for small values
of t0 and only for η values close to ηm ¼ t0=ðγDÞ.

Figure 6 shows the curve jRhðηÞj2 calculated by means of
Equation (30) and (31) for z ¼ 950 μm and the parameters of
Figure 5. One can see a good correspondence with the results
of Figure 5 obtained by a direct solution of the Takagi equations.
Note that the curve was improved for η close to ηm because
Equation (28) is valid for all ξ except the region of very small
values where a thickness of the absorbing material is small.
We do not know ehðξÞ in this region, but we know that ehð0Þ ¼ 0.

Let us discuss physical basis of the effect of strong interfer-
ence. In the region (B), the intensity of the R-beam has to be
equal to zero at the cutout boundary because there is no incident
wave in this boundary. As the radiation is not zero inside the
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Figure 5. Intensity distribution in the area of a triangular cutout on the
exit crystal surface filled by a strongly absorbing material.
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Figure 6. Intensity distribution in a part of the area of a triangular cutout
on the exit crystal surface filled with a strongly absorbing material.
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crystal, the most simple method to make zero intensity is to cre-
ate a standing wave due to interference of two rays. In contrast,
the intensity of the R-beam has to be close to a constant at
the Borrmann fan boundary. Therefore, the amplitude of the
standing wave has to decrease strongly on the way from the first
boundary to the second one. We can see such a behavior of the
intensity in Figure 6.

4. Distance Dependence of the Effect of a Strong
Intensity Increase

There are many parameters of the task considered in this work.
The first one is the distance L between the point source and the
crystal. The second one is the thickness t1 of the perfect crystal
layer. The third one is the crystal angular deviation θ0 from the
Bragg position. The fourth one is the angle θ of the triangular
cutout. The fifth one is the shift Δx of the crystal relative to
the incident beam when the triangular cutout position may be
slightly out of the beam center. In this work, we discuss only
the distance dependence.

The direct numerical calculations show that when L decreases
from 25 000 to 50m, the picture of Figure 3 remains approxi-
mately the same with one difference in the base intensity value
I0. Figure 3 shows the relative intensity Iðx, zÞ=I0; the value I0 is
not shown. It is assumed that the value I0 corresponds to the
bottom line of the figure.

According to Equation (3), the spherical wave intensity is equal
to unity on the entrance surface of the crystal. If the incident
wave is close to the plane wave, the intensity of the transmitted
and diffracted waves for the crystal of the thickness t1 ¼ 800 μm
is close to 0.25 expð�0:38Þ ¼ 0:171 due to the Borrmann effect.
However, there is a diffraction focusing effect [12,13,29] for the
distance L0 ¼ C0t, where C0 ¼ jχhj�1 sinðθBÞ sinð2θBÞ. In our
case, C0 ¼ 3.17� 104. For the thickness t1, we have L0 ¼ 25.4m.

For this distance, the beam width inside the crystal becomes
less than the width of the Borrmann fan W0 ¼ 2t0 tanðθBÞ near
the triangular cutout. In addition, the maximum beam intensity
becomes 20 times higher. If the distance L is greater than 50 m,
the intensity increases due to the focusing effect, but the beam
width is rather large compared with W0. As a result, the calcu-
lated picture of normalized intensity remains approximately the
same as in Figure 3.

It is interesting that approximately the same pictures, as in
Figure 3, were calculated for the distance L less than 10m.
However, now the base intensity value I0 is rather small and
it decreases with a decrease in the distance. The reason for this
is that in this case the beam becomes divergent with a rather
large angular width. A thick crystal works as a collimator and
it selects the narrow angular width near the Bragg angle where
an anomalous transmission takes place. However, it is only a
small part of total intensity. We can call this phenomenon as
the antifocusing effect.

A very strong change in the picture occurs for distances near
the focusing distance L0. Figure 7 shows color maps of intensity
distrubution for L ¼ 30m (top panel), 25m (middle panel), and
20m (bottom panel). In the top panel, the beam width decreases
with an increase in the thickness; in the bottom panel, the beam
width increases with an increase in the thickness; and in the

middle panel, the focus position is just in front of the beginning
of the cutout.

Despite the fact that the pictures have a rather complicated
structure, the intensity increase effect takes place in all the cases.
In this figure, the intensities on the maps are normalized to the
maximum value. Let us denote the value of reflectivity on the
bottom line of the pictures as R1 and the maximum value as
Rm and the same for transmissivity replacing R by T.

Then, if the plane wave reflectivity and transmissivity at the
Bragg angle are normalized by 0.5 (the sum is equal to unity),
we obtain the following values: R1 ¼ 3.0, Rm ¼ 18.3, T1 ¼ 3.8,
Tm ¼ 15.5 for L ¼ 30m, R1 ¼ 7.8, Rm ¼ 20.2, T1 ¼ 8.1,
Tm ¼ 20.3 for L ¼ 25m, and R1 ¼ 3.7, Rm ¼ 9.3, T1 ¼ 5.5,
Tm ¼ 13.3 for L ¼ 20 m. Note that Rm and Tm have higher
values if θ is close to θB and lower values with decreasing θ.
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Figure 7. Intensity distribution in the area of an empty triangular cutout
on the exit crystal surface for various distances L ¼ 30m (top panel),
25m (middle panel) and 20m (bottom panel).
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5. Conclusion

The standard theory of X-ray Laue diffraction in a perfect crystal
considers a crystal such as a slab with an infinite lateral size. Two
wave fields have been discovered inside the crystal for which
strong and weak absorption takes place. As a result, the interfer-
ence fringes can be observed in a thin crystal with a period of
extinction length. In a thick crystal, only one field exists and
the fringes are absent.

We have found out that if the crystal has a triangular cutout on
the exit surface, new kind of fringes can be observed. In addition,
the intensity maximum can increase up to seven times. In this
case, the boundary conditions become rather complicated, and it
is simpler to obtain the results by means of a direct numerical
solution of the Takagi equations with the Fourier components of
crystal susceptibility variable in space. We show that the calcu-
lations based on the crystal propagator lead to the same results
but can give better understanding of the intensity increase effect.

Appendix: Derivation of Equation (25)

The integral equations for the wave amplitudes EkðrÞ were
derived by Afanasev and Kohn[8] from Takagi equations (10)
and (11). The same equations are valid for the additional wave
amplitude ekðrÞ. In our case of a perfect single crystal, the wave
field ehðrÞ on the line ab is defined by the wave fields ekðrÞ on the
line aeb (see Figure 4). However, these fields are equal to zero on
the line ae. Therefore

ehðpÞ ¼ ehðp0Þ �
Z
ep0

ds0
∂R
∂s0

eh �
i
2
Xh

Z
ep0

dshRe0 (32)

Here, the coordinates s0, sh are defined in Equation (10)
and (11) and

R ¼ J0ðXððs0p � s0Þðshp � shÞÞ1=2Þ (33)

where J0ðxÞ is the Bessel function of zero order. The field e0ðp0 Þ
on the line be is a solution of the integral equation

e0ðp0 Þ ¼
Z
ep0

dsh
∂R
∂sh

e0 þ
i
2
X�h

Z
ep0

ds0Reh (34)

In our particular case of a triangular cutout, Equation (34) can
be solved by means of the Laplace transform and we have the
following results

e0ðξηÞ ¼ iX�hγ1

Z
ξη

0
dξUðb½ξη � ξ�ÞehðξÞ (35)

where ξη is the coordinate of the point p
0
on the line be and

γ1 ¼
sinðθB � θÞ
sinð2θBÞ

(36)

We substitute Equation(35) into Equation (32) and apply
the Laplace transform once again. As a result, we obtain
Equation (25).
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