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The analytical solution of the problem of X-ray spherical-wave Laue diffraction

in a single crystal with a linear change of thickness on the exit surface is derived.

General equations are applied to a specific case of plane-wave Laue diffraction

in a thick crystal under the conditions of the Borrmann effect. It is shown that if

a thickness increase takes place at the side of the reflected beam, the related

reflected wave amplitude is calculated as a sum of three terms, two of which are

complex. If all three terms have a comparable modulus, it can lead to an increase

in the reflected beam intensity by up to nine times due to interference compared

with the value for a plane parallel shape of the crystal. The equation for the

related transmitted wave amplitude contains only two terms. Therefore, the

possibility to increase intensity is smaller compared with the reflected beam. The

analytical solution is obtained after a solution of the integral equations by means

of the Laplace transformation. A general integral form of the Takagi equations

derived earlier is used. The results of relative intensity calculations by means of

analytical equations coincide with the results of direct computer simulations.

1. Introduction

We analyze the effect of X-ray wave diffraction in a single

crystal in the Laue case when the transmitted and reflected

waves go out of a sample through the exit surface of the crystal

plate. This case was first investigated experimentally by Kato

& Lang (1959). The authors used a narrow slit for obtaining

coherent images. The narrow slit played the role of a

secondary source with a small transverse section. Such a type

of experimental setup has been widely used for many years for

investigating the degree of perfection of a crystal lattice. This

method is called section topography.

The theory for describing this experimental setup was

developed by Kato (1961, 1968) for the case of zero distance

between a source and a crystal. Kato used the method of

Fourier transformation for a representation of an incident

spherical wave as a superposition of plane waves because the

angular dependence of the amplitudes of transmission and

reflection in the case of an incident plane wave was known in

the analytical form. It turned out that the diffraction picture

on the exit surface of a crystal exists only in the Borrmann fan

between the directions of transmitted and reflected beams.

Then this picture is translated to the detector without trans-

formations.

At the same time Takagi (1962) proposed another variant of

the theory based on a set of differential equations. These
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equations are named after him. A direct numerical solution of

the Takagi equations allows analysis of an arbitrary kind of

incident wave while taking into account crystal lattice distor-

tions and an arbitrary shape of the sample. For the perfect

crystal lattice the set of differential equations can sometimes

be solved as a convolution of the wavefunction on the crystal

boundary with a crystal propagator (Green function) which

has an analytical expression through the Bessel functions.

Such solutions for various crystal boundaries and various

kinds of reflection were presented by Slobodetskii et al.

(1968), Uragami (1969, 1970, 1971), Afanas’ev & Kohn (1971)

and Saka et al. (1972).

Later a generalized theory of the spherical-wave diffraction

in the Laue case was developed by Afanas’ev & Kohn

(1977a,b), Kohn (1979) and Kohn et al. (2000). This theory

took into account the distance between a source and a

detector. One of the main results was a prediction of the

diffraction focusing effect for divergent radiation and a crystal

in the form of a plate. This effect is similar to the Pendry

(2000) focusing effect for visible light. Experimental study of

this effect was performed by Aristov et al. (1978, 1980, 1982,

1986a,b), Aristov, Snigirev et al. (1986) and Koz’mik &

Mihailiuk (1978).

A direct numerical solution of the Takagi equations was

used for investigating section topography for various crystal

lattice defects. The method is described by Epelboin (1977).

One can read a review of the results in the book by Authier

(2005). The inhomogeneous distribution of the radiation field

in the case of X-ray diffraction inside the crystal of a special

form (parallelepiped or cylinder) was investigated by

Olekhnovich & Olekhnovich (1978, 1980), Saldin (1982),

Uragami (1983), Shulakov et al. (1996), Punegov et al. (2016)

and Shabalin et al. (2017). Both analytical and numerical

approaches were used.

Recently, in the work by Kohn & Smirnova (2020), the

effect of strong interference inside the narrow transition layer

was discovered in a thick, perfect crystal with a triangular

cutout at the exit surface. This effect was investigated by

means of two techniques: the direct numerical solution of the

Takagi equations and approximate analytical solution on the

basis of the convolution of the field on some crystal boundary

and Green function which was derived, for example, by

Afanas’ev & Kohn (1971). However, the analytical solution

was presented without a derivation. The authors used the

result of an old paper by Afanas’ev & Kohn (1972) which is

not correct for the case of a triangular cutout.

In addition, the triangular cutout is not easy to perform due

to the narrow angle at the top of the triangle. Such an object

was analyzed in the old paper by Afanas’ev & Kohn (1972) as

a model object for the etch pit at the exit of dislocation on the

surface. In this work we analyze another object, namely a

linear change of thickness on the exit surface. We discover the

same effect of strong interference if the boundary of the

thickness change makes an angle with the direction normal to

the entrance surface slightly less than the Bragg angle. We

consider the case of the reflected beam side of the Borrmann

fan. Our results show narrow peaks of reflected beam intensity

with a maximum value that is more than seven times larger

compared with the intensity in the case of the Borrmann effect

without interference.

In this work we present the total analytical solution of the

task which was used for numerical calculations in the parti-

cular case of an incident plane wave. A specific feature of this

task is that the standard convolution does not give a direct

solution but only an integral equation because some fields on

the boundary are not known. Therefore we need to obtain an

analytical solution of the integral equation. In the next section

we present a formulation of the task and a method for

analytical solution. Then we describe the results of calcula-

tions and discuss our findings.

2. Experimental setup and analytical solution of the
Takagi equations

An assumed experimental setup is shown in Fig. 1. A mono-

chromatic spherical wave from a point source of X-rays

located at a distance L from the sample is incident at the

Bragg angle and has finite angular divergence. The sample is a

single crystal in the form of a plate but with a local linear

change of thickness on the exit surface. The thickness is

changed from the value t1 to the value t ¼ t1 þ t0.

We take into account the fact that any source of X-rays

(synchrotron or laboratory) consists of many independent

point sources because electrons inside the storage ring of a

synchrotron source or atoms inside the anode of an X-ray tube

radiate spontaneously without correlation between them.

Monochromatization of radiation is realized by a standard

technique and does not influence the phase front of the inci-

dent wave. The monochromator is assumed in Fig. 1 but not

shown. The effective transverse size of the source is taken into

account by summing intensity from all points of the source

transverse section.

A local linear change of the crystal thickness on the exit

surface is a source of sharp spatial inhomogeneity of intensity

of the transmitted and reflected beams in the direction along

the surface. It is measured by position-sensitive detectors

separately for each beam. The beams are measured at some

distance from the sample where the beams do not intersect

each other in space. For the sake of simplicity we will calculate

the beam intensity in the thick part of the exit surface of the

sample with thickness t.

The most effective way to solve the problem is to divide it

into two steps. At the first step one calculates the intensity

distribution for the thickness t1. At this step the exit surface is

even and the sample is homogeneous along the x axis of the
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Figure 1
The experimental setup assumed in this work.
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crystal coordinate system. Inhomogeneity can arise only from

the incident wave and the diffraction effect. The task can be

solved by the method of Fourier transformation with the use

of an analytical solution for the case of an incident plane wave.

We assume that the angular divergence of the incident wave

is large and there is no necessity to use a modified Fresnel

propagator (Kohn, 2018). The incident wave function in the

paraxial approximation can be written as

EiðuÞ ¼ ð�LÞ1=2 expðiKvÞPðu;LÞ ð1Þ
where the v coordinate is counted along the direction from the

source to the crystal (the left set of axes in Fig. 1), � is the

wavelength of X-rays, K ¼ 2�=� and the Fresnel propagator

has the form

Pðu; vÞ ¼ ði�vÞ�1=2 exp i�
u2

�v

� �
: ð2Þ

Note that the intensity is independent of the coordinate

normal to the plane of the figure.

We represent (1) as the Fourier integral over q variable and

take into account that q ¼ K� describes small angular diver-

gence of the incident wave near the Bragg angle �B. Now the

incident wave has the form of superposition over the plane

waves with the wavevectors k0 ¼ ðq; 0;KÞ. Let us consider the

case of symmetrical Laue diffraction with the wavevector h. It

is known that the wavevector of the transmitted wave stays the

same due to plane-wave diffraction in the crystal plate

(Authier, 2005; Pinsker, 1978). Using the analytical solution

for the plane wave we can write the solution for the trans-

mitted wave at the first step as follows:

E0ðu; t1Þ ¼ ð�LÞ1=2

Z
dq

2�
expðiquÞPðq;LÞA0ðq; t1Þ: ð3Þ

Here and below we omit the factor expðiKvÞ because it does

not influence the intensity. The Fourier image of the Fresnel

propagator has the analytical expression

Pðq; vÞ ¼ exp �i
�v

4�
q2

� �
: ð4Þ

On the other hand, a solution of the task for a plane incident

wave is well known (Authier, 2005; Pinsker, 1978; Kohn, 2002).

We write it in the form convenient for calculations,

A0ðq; tÞ ¼
expðM þGÞ þ r2 expðM �GÞ

1 þ r2
; ð5Þ

where

M ¼ iðX0 þ �qÞ
t

2�0

; G ¼ ig
t

2�0

; g ¼ ð�2
q þ X2Þ1=2; ð6Þ

r ¼ �q þ g

X
; X0 ¼ K�0; X ¼ Kð�h��hÞ1=2; ð7Þ

�q ¼ ðq� q0Þ sinð2�BÞ; �0 ¼ cosð�BÞ: ð8Þ
It is assumed that the parameter g has a positive imaginary

part, �0, �h, ��h are the Fourier components of the crystal

susceptibility on the reciprocal-lattice vectors 0, h, �h,

respectively, and the parameter q0 = K�0 describes a possible

deviation in the angular position of the crystal from the Bragg

angle.

The expression for the reflected wave is similarly

Ehðu; t1Þ ¼ ð�LÞ1=2

Z
dq

2�
expðiquÞPðq;LÞAhðq; t1Þ; ð9Þ

where

Ahðq; tÞ ¼
Xh

2g
expðM þGÞ � expðM �GÞ½ �: ð10Þ

Here Xh ¼ K�h. In this case the wavevector of the plane wave

is equal to k0 þ h and the reflected wave direction makes the

Bragg angle with the direction of an incident wave.

Thus we know the radiation wave functions E0ðuÞ and EhðuÞ
for the transmitted and reflected beams as a result of

diffraction in the crystal of thickness t1. The next problem is to

search for an analytical solution on the exit surface of the

crystal with the thickness t. First of all we need to change the

coordinate system from (u, v) to (x, z) as shown in Fig. 1. The

angle between the axes u and x is �B and we obtain values on

the axis x and on the new set of points by means of inter-

polation after a projection from u to x axes along the v axis. At

the second step we need to solve the Takagi equations (Takagi,

1962)

2

i

@E0

@s0

¼ X0E0 þ X�hEh expðihuÞ; ð11Þ

2

i

@Eh

@sh
¼ ðX0 þ 2�qÞEh þ XhE0 expð�ihuÞ: ð12Þ

Here as above X0;h;�h = K�0;h;�h, s0 and sh are the coordinates

along the directions of the transmitted and reflected waves, u

is the displacement vector due to possible distortion of the

crystal lattice, and the parameter �q = Kð� � �0Þ sinð2�BÞ. The

angle � � �0 describes an angular position of the crystal rela-

tive to the central ray in the incident spherical wave.

We are interested in the case when �q ¼ 0 and the crystal

lattice is perfect (u ¼ 0). Under the latter condition a solution

of Takagi equations (11), (12) can be obtained as the integrals

over some boundary inside the Borrmann fan which has a top

in the observation point and side lines along the directions of

transmitted and reflected waves (Slobodetskii et al., 1968;

Uragami, 1969, 1970, 1971; Afanas’ev & Kohn, 1971; Saka et

al., 1972).

We consider the case of an incident plane wave when the

Bragg conditions are met exactly. In this case the condition

L � Ldf should be fulfilled where

Ldf ¼ t1C C ¼ j�hj�1 sin �B sinð2�BÞ: ð13Þ
We note that a perfect collimation of the incident beam can be

realized with a compound refractive lens (Snigirev et al., 1996).

Fig. 2 shows the region of linear change of thickness on the

exit surface together with the Borrmann fan where at least one

of two wavefunctions depends on the x coordinate. We will use

an approach that was used for the first time by Afanas’ev &

Kohn (1972). Instead of the real wavefields EkðrÞ, k ¼ 0; h, we
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consider the differences between these fields and the solutions

AkðzÞ for a sample with a plane plate shape. The latter solu-

tions are known in an analytical form. The integral equations

are the same for the differences, but the boundary conditions

are different because the differences are equal to zero in the

areas where inhomogeneity does not influence the fields.

In reality we consider the functions

ekðrÞ ¼ ½EkðrÞ � AkðzÞ�F�1
0 ðzÞ; k ¼ 0; h; ð14Þ

where

AkðzÞ ¼ CkF0ðzÞF�1
h ðzÞ; F0;hðzÞ ¼ expðiX0;hz=2�0Þ: ð15Þ

Here �0 ¼ cos �B and the coefficients Ck depend on the

normalization. For the incident plane wave they are equal to

�0:5 for k ¼ 0; h, respectively. Note that the functions ekðrÞ
are equal to zero outside the triangle acd in Fig. 2.

According to the integral form of the theory (Afanas’ev &

Kohn, 1971), the function ehðpÞ at the point p on the line ab is

determined by the functions ekðrÞ on the lines ad and db.

However, ekðrÞ ¼ 0 on the line ad. Therefore, we have a formal

solution as follows:

ehðpÞ ¼ ehðp0Þ �
Z
dp0

ds0

@R

@s0

eh �
i

2
Xh

Z
dp0

dshRe0: ð16Þ

Here

R ¼ J0 X s0p � s0

� �
shp � sh
� �� �1=2

� 	
; ð17Þ

where X ¼ ðXhX�hÞ1=2, s0p, shp are the coordinates of the point

p. Here and below JnðxÞ is the Bessel function of the nth order.

On the other hand, the function e0ðp0Þ on the line db is a

solution of the integral equation

e0ðp0Þ ¼
Z
dp0

dsh
@R

@sh
e0 þ

i

2
X�h

Z
dp0

ds0Reh ð18Þ

if the function ehðrÞ is known on this line.

In our case the line db is straight. Let us introduce the

coordinates � and �	 for the points on the line dp0 and at the

point p0. Relations between the coordinates are as follows:

z ¼ cos �Bðs0 þ shÞ ¼ � cos �; x ¼ sin �Bðs0 � shÞ ¼ �� sin �:

ð19Þ
Let A be an argument of function (17). Taking into account

(19) we easily obtain that on the line db

s0 ¼ �1�; sh ¼ �2�; A ¼ bð�	 � �Þ; b ¼ Xð�1�2Þ1=2;

ð20Þ
where

�	 ¼ �0 � 	D1; �0 ¼
t0
�
; D1 ¼

�0

sinð�B � �Þ ; ð21Þ

�1 ¼
sinð�B � �Þ

sinð2�BÞ
; �2 ¼

sinð�B þ �Þ
sinð2�BÞ

; � ¼ cos �: ð22Þ

Here �	 is the length of the segment dp0 and 	 is the length of

the segment pb. We are interested in the intensity dependence

on 	 for the transmitted and reflected waves.

The integral in equation (18) is counted from 0 to �	. We

make a replacement � ! �	 � � with the same limits. Then the

derivative is defined by

@R

@sh
¼ 1

2
X

s0

sh

� �1=2

J1ðAÞ ¼
1

2
X

�1

�2

� �1=2

J1ðb�Þ ð23Þ

and equation (18) takes the form

e0ð�	Þ ¼
Z�	
0

d�e0ð�	 � �ÞJ1ðb�Þ

þ i

2
X�h�1

Z�	
0

d�ehð�	 � �ÞJ0ðb�Þ: ð24Þ

Note that the integrals are the convolution of two functions.

Equation (24) can be solved by applying the Laplace

transformation

eðqÞ ¼ ½eð�Þ�q ¼
R1
0

d� expð�q�Þeð�Þ ð25Þ

and the property that convolution of two functions corre-

sponds to the product of their Laplace transforms. Therefore,

we have

e0ðqÞ ¼
b

2
e0ðqÞ½J1ðb�Þ�q þ

i

2
X�h�1ehðqÞ½J0ðb�Þ�q: ð26Þ

Here we use the second notation in equation (25) for the

Laplace transform. We found the table integral (Gradshteyn &

Ryzhik, 1963, equation 6.646.1) which can be transformed to

the following form:

�

� þ a

� �n=2

Jn b �ð� þ aÞ½ �1=2
� � !

q

¼ bn exp a2ðq� uÞ� �
uðqþ uÞn : ð27Þ

Here

a2 ¼ a=2; u ¼ ðq2 þ b2Þ1=2: ð28Þ
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The boundary of a linear change of thickness on the exit surface of a
crystal and the Borrmann fan where the fields depend on the x
coordinate. See text for details.
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We substitute equation (27) for a ¼ 0 into equation (26) and

perform computation. As a result, using the notation

W ¼ iX�h�1=2 we obtain

e0ðqÞ ¼ WehðqÞ
½J0ðb�Þ�q

1 � ðb=2Þ½J1ðb�Þ�q


 �
¼ 2WehðqÞ

qþ u
: ð29Þ

On the other hand,

2

qþ u
¼ ½Uðb�Þ�q; UðxÞ ¼ 2

J1ðxÞ
x

¼ J0ðxÞ þ J2ðxÞ: ð30Þ

As a result, we obtain a solution of equation (24) which can be

written as follows after a reverse replacement � ! �	 � �:

e0ð�	Þ ¼
i

2
X�h�1

Z�	
0

d�U½bð�	 � �Þ�ehð�Þ: ð31Þ

Let us consider equation (16). Here the argument of the

Bessel function depends on the coordinates of the point p on

the line ab. These coordinates are equal to zp ¼ t0 ¼ �0 cos �,

xp ¼ ��0 sin � � 	 while the coordinates of the point on the

line dp0 are defined in equation (19). Direct calculations give

the following result:

s0p � s0 ¼ �1�d; shp � sh ¼ �2ð�d þ aÞ; �d ¼ �	 � �; ð32Þ

R ¼ J0ðb
�Þ;
@R

@s0

¼ b&�
2�1

J1ðb
�Þ; a ¼ "	; ð33Þ

" ¼ D1 þD2; D2 ¼
�0

sinð�B þ �Þ ð34Þ


� ¼ ½�dð�d þ aÞ�1=2; &� ¼
�d þ a

�d

� �1=2

: ð35Þ

Now we can write equation (16) in the following form:

ehð	Þ ¼ ehð�	Þ �
b

2

Z�	
0

d� ehð�Þ&�J1ðb
�Þ

� i

2
Xh�2

Z�	
0

d� e0ð�ÞJ0ðb
�Þ: ð36Þ

The integral is a convolution of two functions once again and it

is useful to apply the Laplace transformation. However, this

time the functions have more complicated arguments. We

apply the Laplace transformation (27) to the third term in

equation (36) and substitute equation (29). According to

equation (27) we obtain this term in the form

b

2
ehðqÞ

b exp½a2ðq� uÞ�
uðqþ uÞ ¼ b

2
ehðqÞ

� �

� þ a

� �1=2

J1 b½�ð� þ aÞ�1=2
� � !

q

: ð37Þ

After a transition from the q space to the � space we obtain the

following expression for the sum of the second and third

terms:

� b

2

Z�	
0

d� ehð�ÞJ1ðb
�Þ
�d þ a

�d

� �1=2

� �d
�d þ a

� �1=2
" #

: ð38Þ

Having made the necessary calculations one can obtain a more

suitable equation for the wavefunction of the reflected wave

from equation (36):

ehð	Þ ¼ ehð�	Þ �
1

4
b2"	

Z�	
0

d� ehð�Þ

� Ufb½ð�	 � �Þð�	 � � þ "	Þ�1=2g: ð39Þ
This equation allows us to calculate the unknown function

ehð	Þ on the line ab through the known function ehð�Þ on the

line bd. The latter function is known because the function

EhðrÞ on this line is the same as that on the line de due to the

fact that between these lines the space is empty. That is why its

value at the point p0 is equal to that at the point p00 (see Fig. 2).

The difference is easy to calculate.

The equation for the function e0ð	Þ on the line ab can be

written similarly to equation (36) with some evident changes:

e0ð	Þ ¼
b

2

Z�	
0

d� e0ð�Þ
1

&�
J1ðb
�Þ

þ i

2
X�h�1

Z�	
0

d� ehð�ÞJ0ðb
�Þ: ð40Þ

We apply the Laplace transformation to the first term in the

right-hand part of this equation taking into account equation

(27) and substitute e0ðqÞ from equation (29). As a result we

obtain the expression equal to the second term after

replacement of J0ðb
�Þ by J2ðb
�Þ&�2
� . For the sum of two terms

we have

J0ðb
�Þð�d þ aÞ þ J2ðb
�Þ�d
�d þ a

¼ Uðb
�Þ�d þ J0ðb
�Þa
�d þ a

: ð41Þ

Now we can write the final equation as follows:

e0ð	Þ ¼
i

2
X�h�1

Z�	
0

d�U1ð�	 � �; 	Þehð�Þ ð42Þ

where

U1ð�; 	Þ ¼
�Ufb½�ð� þ "	Þ�1=2g þ "	J0 b½�ð� þ "	Þ�1=2

� �
� þ "	

: ð43Þ

It is much easier to calculate the functions on the line bc.

The field EhðrÞ can be obtained from the line de by simple

transition along the direction of the reflected beam. For the

plane incident wave this is independent of x. The field E0ðrÞ
can be obtained from the line bd by simple transition along the

direction of the transmitted beam. Therefore, the field at the

point p0 is equal to that at the point p0. The field E0ðrÞ on the

line bd is calculated by means of equation (31).
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3. Results and discussion

We consider the case of 440 diffraction of X-rays with the

photon energy E ¼ h- ! = 12 keV in the silicon single crystal

for t1 = 2 mm, t0 = 0.2 mm. The Bragg angle �B = 32.55�. Here

we assume the incident plane wave with L much larger than

Ldf . Experiments with the use of synchrotron radiation for

such a distance can be realized by means of a compound

refractive lens (Snigirev et al., 1996).

Taking equation (15) into account we obtain for the func-

tion ehð�Þ on the line bd the following equation:

ehð�Þ ¼ ChF
�1
h ðt1Þ½F�1

0 ð��Þ � F�1
h ð��Þ�: ð44Þ

It is convenient to analyze the ratio of the beam intensities

for the total thickness t for the case of a crystal with a linear

change of thickness to the case of a crystal without a change.

We consider the function Rhð	Þ ¼ Ehð	Þ=AhðtÞ on the line ab.

Equations (39) and (15) allow us to write the expression for

Rhð	Þ as follows:

Rhð	Þ ¼ 1 þ ghð�D1	Þ �Ghð	Þ ð45Þ
where

Ghð	Þ ¼
1

4
b2"	

Z�	
0

d�ghðt0 � ��ÞUfb½ð�	 � �Þð�	 � � þ "	Þ�1=2g;

ð46Þ

ghðxÞ ¼ CF0ðxÞ � FhðxÞ; C ¼ Fhðt0ÞF�1
0 ðt0Þ: ð47Þ

It is convenient to make a replacement � ¼ �	 � �1 in integral

(46) with the same limits. Finally we have

Ghð	Þ ¼
1

4
b2"	

Z�	
0

d�1ghð�D1	þ ��1ÞUfb½�1ð�1 þ "	Þ�1=2g:

ð48Þ
Note that when 	 = 	m = t0=�D1 (where m denotes the

maximum value of 	), the second and third terms in equation

(45) are equal to zero, i.e. the solution is not changed at the

boundary of the Borrmann fan. At the other limit 	 = 0 we

have Rhð0Þ = Fhðt0ÞF�1
0 ðt0Þ. Therefore, the relative intensity

depends weakly on the height t0 of a linear change of thick-

ness. However, the real intensity is independent of t0. It is

equal to the value for the thickness t1.

We obtained that the equation for relative intensity

contains three terms, and two of them are complex values. The

interference of three terms with a comparable (equal)

modulus can increase the intensity by up to nine times. It was

demonstrated that the direct computer simulations show an

increase in the maximum intensity by more than seven times.

Equation (45) allows us to analyze how this occurs.

Equations (42) and (15) allow us to write the expression for

R0ð	Þ ¼ E0ð	Þ=A0ðtÞ on the line ab as follows:

R0ð	Þ ¼ 1 �G01ð	Þ; ð49Þ
where

G01ð	Þ ¼
i

2
X�h�1

Z�	
0

d�1ghð�D1	þ ��1ÞU1ð�1; 	Þ: ð50Þ

Now the expression contains two terms. If the second term has

the modulus close to unity, the interference can increase the

intensity by up to four times. However, computer simulations

do not show such an increase.

Let us consider the ratio R0ð	Þ ¼ E0ð	Þ=A0ðtÞ on the line bd.

In this case the coordinate 	 is counted from the point b to the

point d, and �	 = �0 � 	D2. The point p0 corresponds to the

point p0 in Fig. 2. With the same calculations as before we can

obtain

R0ð	Þ ¼ F�1
0 ð�D2	Þ½Fhð�D2	Þ �G02ð	Þ�; ð51Þ

where

G02ð	Þ ¼
i

2
X�h�1

Z�	
0

d�1 ghð�D2	þ ��1ÞUðb�1Þ: ð52Þ

Here we took into account that the fields E0 at the point 	 on

the line bc and �	 on the line bd are the same, and Ch = �C0.

At the point 	 = 0 equation (51) gives the same value as

equation (38). If 	 = 	m = t0=�D2, we have R0ð	mÞ =

Fhðt0ÞF�1
0 ðt0Þ. This value is slightly greater than unity because

the real field is not absorbed in the empty space but the

denominator corresponds to the field which is absorbed.

We performed the computer program in the language ACL

(Kohn, 2017) for a calculation of the relative intensity I=I0 =

|Rkð	Þj2, k = 0, h on the basis of equations (45), (49), (51). The

argument 	 can be recalculated to the argument x=x0 where x0
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Figure 3
Various kinds of crystal boundary on the exit surface. The numbers
specify the values of the parameter R.

Figure 4
Relative intensity on the exit surface within the Borrmann fan, namely on
the line ab in Fig. 2. The top panel is for the transmitted beam (T), the
bottom panel is for the reflected beam (R). x0 = 0.1276 mm, R = 0.5.
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is half of the Borrmann fan width. In the case considered

in this work x0 = 0.1276 mm. We consider three various

cases of a linear change of thickness with the parameter

R ¼ tanð�Þ= tanð�BÞ equal to 0.5, 0 and �0.5. The boundary of

the exit surface for these cases is demonstrated in Fig. 3 where

the R values are shown.

The results of calculation are presented in Figs. 4–6. Fig. 4

shows the curves for the case with R ¼ 0:5. In this case we

obtain an increase in the relative intensity of the reflected

beam by up to eight times. The curve contains many well

pronounced peaks of a small width. The relative intensity of

the transmitted beam in the same region has the same number

of peaks, but some of them are weakly pronounced. The

highest peaks occur at the same x coordinate, but the trans-

mitted beam intensity is only two times higher than unity.

Figs. 5 and 6 demonstrate the curves for the cases with

R ¼ 0 and �0.5. In these cases the length of the left region

increases, but the number of peaks stays the same. Only peak

width increases. The structure of the peaks is changed as well.

The height of the highest peak for the transmitted beam stays

the same, but for the reflected beam it becomes two times

smaller.

4. Conclusion

The analytical solution of each problem allows better under-

standing of the reason for effects under consideration. We

have found the effect of a strong increase in the reflected

beam intensity in a narrow region of a thick single crystal with

a linear change of thickness on the exit surface. An increase in

the reflected beam intensity by more than seven times was

calculated by means of direct computer simulations. However,

a numerical solution of the Takagi equations cannot give an

understanding of how it works.

In this paper we present an analytical solution of the Takagi

equations on the basis of the integral form of these equations

derived earlier. In the particular case of a linear change of

thickness the integral form of equations has the form of an

integral equation as a convolution of two complex functions.

Such integral equations have been solved by means of the

Laplace transformations. We have found that the final

expression for the relative wave amplitude of the reflected

beam contains three terms, two of which are complex. The

interference of these terms can increase the intensity by up to

nine times if all the terms have a comparable modulus.

For the relative wave amplitude of the transmitted beam

there are only two terms. Therefore, the possibility to increase

the intensity is modest. The analytical solutions have a rather

complex structure. However, they can be useful in the analysis

of how the effect depends on various parameters. The

numerical results obtained with the use of the analytical

expression coincide completely with the results of direct

computer simulations.
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