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Abstract—A method for computing the Laue diffraction of an X-ray spherical wave in a single crystal with an
inclined step on the exit surface has been developed. The method is based on the use of two approaches to
solving the problem: Fourier transformation of the wave function angular dependence in the case of a plane
wave incident on a plate-shaped crystal and a numerical solution of the Takagi equations in the step area,
where the diffraction parameters depend on the coordinate along the crystal surface. The effect of strong
increase in the reflected-beam intensity (by a factor of more than 7 in the maxima) in the transition area, if
the step boundary makes a smaller angle with the reflected-beam direction, is predicted based on the numer-
ical calculations. The dependence of the effect on the step-boundary inclination angle is analyzed.
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INTRODUCTION

Laue diffraction of an X-ray spherical wave in a
plate-shaped single crystal is observed when the
reflected beam exits from the sample through the
same surface as the transmitted beam. This surface is
referred to as the exit surface. This diffraction was
experimentally observed for the first time in 1959 [1].
Coherent images were obtained in [1] using a narrow
slit installed before the crystal, which, in fact, served as
a secondary radiation source with a small cross sec-
tion. This experimental method, which has been
widely used for many years to study the quality of sin-
gle crystals, is referred to as X-ray section topography.

The theory describing the experimental scheme [1]
was developed in [2, 3] for zero source—crystal dis-
tance. An incident spherical wave was presented as a
superposition of plane waves using Fourier transfor-
mation. The angular dependence of the transmission
and reflection amplitudes in the case of plane-wave
diffraction is determined analytically. It was found
that the diffraction pattern on the exit crystal surface is
observed in the Borrmann triangle formed by the inci-
dent and reflected beams. Then this pattern is trans-
ferred without changes to the detection plane.

Almost simultaneously, Takagi [4] proposed
another version of the theory, which is based on a sys-
tem of differential equations. Now, these equations are
named after their discoverer. A numerical solution of
the Takagi equations makes it possible to consider not
only an arbitrary type of incident wave but also the lat-
tice distortions near defects, as well as crystals of arbi-

trary shape. The system of differential equations for a
perfect crystal has a solution in the form of a convolu-
tion of the wave function on the crystal boundary with
the crystal propagator, which is expressed analytically
in terms of Bessel functions. Various solutions for
crystals with different boundaries and reflection
geometries were obtained in [5—11].

A generalized theory of spherical-wave diffraction,
where the source—detector distance was additionally
taken into account, was developed in [12—14]. One of
its main results was the prediction of the diffraction
focusing of divergent radiation by a plate-shaped crys-
tal. This effect was experimentally verified in [15—18].

An efficient numerical method was proposed to
solve the Takagi equations for crystals containing
structure defects (see, e.g., [19]) and calculations for
different defects under different irradiation conditions
were carried out [20]. The inhomogeneous structure
of radiation upon diffraction in crystals of specific
shape (parallelepiped or cylinder) was investigated
both analytically and numerically in [21—27].

The purpose of this study was to investigate theo-
retically the diffraction of a spherical X-ray wave in a
thick perfect crystal with an inclined step on the exit
surface. Two approaches were used to solve the prob-
lem: Fourier transformation of the angular depen-
dence of the wave function of a plane wave incident on
a plate-shaped crystal and numerical solution of the
Takagi equations in the step area, where the diffraction
parameters depend on the coordinate along the sam-
ple surface. The analytical solution to the Takagi equa-
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Fig. 1. Schematic of the calculation experiment: S is the
spherical-wave source, R is the reflected beam, and T is
the transmitted beam. The coordinate systems on the left
and on the right correspond to the first and second stages
of problem solution, respectively.

tions is reported in the second part of the work [28].
The interest in this sample shape is stems from the fol-
lowing fact: if the step inclination angle is smaller than
the Bragg angle, the almost homogeneous spatial dis-
tribution of reflected-beam intensity changes signifi-
cantly in the narrow transition area of the thick crystal
(the intensity in the maximum increases by a factor of
more than 7). This effect depends only slightly on the
source—crystal distance, except for the diffraction-
focusing region. The dependence of the effect on the
step inclination angle has been analyzed. The results
obtained stimulate experimental study of the effect
and can be used for different practical purposes (in
particular, for high-precision determination of the dif-
fraction parameters depending on the crystal struc-
ture).

FORMULATION OF THE PROBLEM
AND NUMERICAL SOLUTION TECHNIQUE

A schematic of the numerical experiment is shown
in Fig. 1. A monochromatic spherical wave from a
point X-ray source, located at a distance L from the
single crystal, is incident on the crystal surface at the
Bragg angle and has a finite angular divergence. The
crystal is plate-shaped and has a thickness ¢ (maxi-
mum thickness); there is an inclined step of height ¢,
on its exit surface.

This formulation of the problem stems from the
fact that the correct description of an X-ray source
(synchrotron or a laboratory source) requires indepen-
dent consideration of each point of the source cross
section, because both electrons on the orbit of syn-
chrotron source and atoms of the X-ray tube anode
emit spontaneously, and there is no correlation
between these microsources. The radiation, being
monochromatizied in standard ways, does not affect
the shape of the incident-wave cross section. The
monochromator is omitted in Fig. 1. The effective
transverse source size is taken into account by sum-
ming up the intensities of all cross section points.

The inclined step on the single-crystal exit surface
leads to a spatial inhomogeneity of the intensities of
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transmitted and reflected beams in the cross section.
The detectors measure these beams independently.
They are spaced by a short distance to provide spatial
separation of the beams and eliminate interference.
For simplicity, we will calculate the beam intensities
on the exit crystal surface in its thick part (thickness 7).

It is convenient to divide the problem into two
stages. In the first stage, we will calculate the wave-
field distribution over the crystal thickness #, = ¢ — t,.
The step is absent in this region, and the crystal is
homogeneous along the surface (along the x axis). An
intensity inhomogeneity occurs only due to the inci-
dent-wave inhomogeneity and the diffraction effect.
In this case, it is convenient to solve the problem by the
Fourier transform method, using the analytical solu-
tion for an incident plane wave.

Let us assume that the relativistic effects limit only
slightly the beam angular divergence, and there is no
need to introduce corrections into the Fresnel propa-
gator, as was made in [29]. Within the paraxial approx-
imation, it is convenient to write the wave function of
the incident wave in the form

E(x) = (\L)"* exp(iKz)P(x, L), (1)

where the z coordinate is counted from the source to
the crystal (Fig. 1, axes on the left), A is the X-ray
wavelength, K= 2nt/A, and the Fresnel propagator can
be written as

P(x,2) = (iAg)* exp (iﬂ:x—zj. )
Az

The intensity is independent of the y coordinate in
the direction perpendicular to the diffraction plane.
Let us present (1) in the form of a Fourier integral over
¢ and take into account that ¢ = KO describes a small
angular divergence of incident radiation near the
Bragg angle (i.e., the incident wave is a superposition
of plane waves with the wave vector k, = (¢, 0, K)).

We consider the symmetric Laue diffraction from a
system of atomic planes corresponding to the recipro-
cal-lattice vector h. It is known that the wave vector of
a transmitted wave does not change in the case of dif-
fraction from a plate-shaped perfect crystal [20, 30].
Using the analytical solution for a plane wave, one can
obtain directly a solution for the first stage in the form

Eiet) = (M) [LexpligoP(a. A1) ()

Hereinafter, the factor exp(iKz) is omitted, because it
does not affect the intensity. The analytical expression
of the Fourier transform of Fresnel propagator has the
form

P(q,2) = exp(—if‘“—;qz), 4
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and the solution to the problem for a plane wave is well
known [20, 30, 31]. Let us write this solution in the
form convenient for calculations:

exp(M +G)+r exp(M G)

Ayq,t) = %)
1+7°
where
M =ilX, + o ],
G=igl, g= (02 + X2,
A
o, +
r==3 g Xy=Kyy X =Ko )

o, =(q—¢qp)sin20p, Y, = cosOp. (8)

The parameter g has a positive imaginary part; X, X
and x_, are the Fourier components of the crystal
polarizability for the reciprocal-lattice vectors 0, h,
and —h, respectively; 0y is the Bragg angle; and the
parameter g, = KB, describes a possible deviation of
crystal orientation from the Bragg angle.

A similar solution can be derived for the reflected
wave:

Ey(x.1) = (M)‘”j%ﬁexp(iqx)f’(q,mh(q, B, ©)

where

A4@.0) = S2[exp(M +G) =exp(M ~G)].  (10)

g
Here, X, = Ky, In this case, the wave vector of plane
waves is k, + h, and the reflected wave propagates
along the direction making a double Bragg angle with

the transmitted-wave direction.

In the second stage, we will solve another problem:
diffraction in a plate-shaped crystal in the case of an
arbitrary incident wave and arbitrary inhomogeneity
of crystal structure in the xz plane. In this stage, we
will use the another coordinate system (Fig. 1, on the
right). The x and z axes are oriented along the plate
surface and normally to the surface, respectively. The
following Takagi equations will be numerically
solved [4]:

295 _ x £+ X_,E, exp(ihu), (11)
i 0s,
2B, _ \x, + 20, |E, + X,Eyexp(-ih).  (12)
i 0s,
Here, X_, = Ky _,; s, and s, are the coordinates along

the propagation directions of transmitted and
reflected waves, respectively; and u is the shear vector
due to possible lattice strain. The parameter of devia-
tion from the Bragg condition, o, was determined
in (8).
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Fig. 2. Computational grid used in numerical solution of
the Takagi equations and directions of oblique coordinate
axes.

To solve the Takagi equations for the Laue diffrac-
tion, it is convenient to make a substitution E, =

E,exp(—ihu) and write the equation in the form

PO, _ =U,E, + UE,,
2 ds, (13)
q9E; _ IV, + WIE, + VE,,
2 ds,
where
ip ip iq
u,=2x, v=%x, v =4Yx, 14
0 4 0 4 h 0 4 0 ( )
v=4x, w=4g, +du (15)
4 2 ds, |

The parameters p and g are determined by approxi-
mate solution of the Takagi equations. We will con-
sider the layers in the crystal of thickness d, that are
oriented parallel to the x axis. The parameters p and ¢
are equal to the segments along the propagation direc-
tions of the transmitted and reflected waves, respec-
tively, corresponding to a single layer. For symmetric
diffraction, p = g = d_/Y,. In this model, there are no
strains in the crystal (i.e., u = 0); however, the param-
eters U, U, V,, and V depend on the x and z coordi-
nates.

To solve numerically Egs. (13), one must replace
the derivatives by the ratio of differences. Using the
method proposed in [19], one can calculate the deriv-
atives and functions in the middle of the layer accord-
ing to the following algorithm:

df (x-=p/2) _
dx

2f(x=p/D) = f(0)+ f(x = D).

Having replaced the derivatives and functions in
Eq. (13) for the middle of each layer, according to the
algorithm (16), (17), we obtain a system of linear equa-
tions for the amplitudes of transmitted and reflected
waves for the system of points with periods ¢, and d, =
2d tan O3 along the z and x axes, respectively (Fig. 2).

=f(0) = f(x-Dp), (16)

A7)
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The solution to this system (Eé”)) can be written as

a product of matrix M, 4 and vector Eff’):

E" = My, X E,”, (18)
where
ES" = [Ey(S0, 1) Ep (50, 1)1 (19)
E{ = 1E(s0,50), Eyfs0.51), 20)
E()(So, S;)a E/‘t(SOJ S;)] )
1 [UgW, UW, UV, UWY @D
RGN AN )

Here, s, =sy—p, s, =$,— ¢,
Uy =120, W =1xW, (22)
W, =W +V,, D=UW, -UV. (23)

The solution technique is as follows. Let us begin
from the entrance surface of the first layer, where the

amplitudes E, and E, are known from the boundary
conditions, and use (18) to find the corresponding val-
ues on the layer exit surface, which is the entrance sur-
face for the next layer, etc. As a result, we obtain the
values at all grid points (Fig. 2). The number of grid
points N, along the x axis decreases by unity at each
iteration. Therefore, to find the solution in the area of
size N, d, along the x axis, one must know the bound-
ary conditions in the area (N, + N,)d, and the total
thickness of the crystal in the second part 7, = Nd,
(Fig. 2), where NV, is the number of layers.

Matrix (21) is for a crystal with a strained lattice. If
a crystal has amorphous regions, in which diffraction
is absent, the matrix for these regions has the form

1{UV7,0,0,0
My, =— b (24)
D(0,0,0, UV,
where
v=2x, v=4x, p=uv;; (@5
4 4
Ur=1£U,, V' =1%V, X =Ky. (26)

Here, 7, is the zero Fourier component of crystal
polarizability in the amorphous region, which may
have another chemical composition. In particular, this
region may be a void (), = 0). For the symmetric case,
Vl = Ul.

In this study, the solution to the problem in the first
stage determines the boundary conditions for the sec-
ond stage. Since the point grids used in different stages
differ, the necessary values can be obtained by inter-
polation. In addition, the x axis of the first stage must
be projected on the x axis of the second stage, taking
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into account that these axes make the Bragg angle.
Specific calculations were performed for the silicon
crystal, and the parameters ), X, and _, were calcu-
lated using the on-line-program [32].

The computer program was written in the ACL lan-
guage [33]. The Fourier integrals (3) and (9) were cal-
culated using a fast Fourier transform procedure
built-in in the ACL language. The code of this proce-
dure in the Fortran language has been known since the
middle of the last century as a part of the NAG library
[34]. The number of points used in the calculations is
N=16384. The point-grid step d, is specified; the step
d,= Kdy = 21/(Nd,), and the computational box Nd,
in the reciprocal space should be sufficiently large so
as to make the integrand function zero at the box
boundaries.

Note that the amplitude (5) is exp(iXyt,/2Y,); it is
nonzero in a thin crystal in the limit |g| — oo. In this
study, the crystal is thick, the modulus of the afore-
mentioned function is close to zero, and thus the prob-
lem is removed. It is also important to control the spa-
tial position of the Borrmann triangle. Fourier inte-
grals (3) and (9) for zero distance (L = 0) are nonzero
only in the range x < 0, because the point x = 0 corre-
sponds to all rays whose angular position is beyond the
Bragg diffraction range. It is convenient to shift the
origin of coordinates along the x axis so as to make it
correspond to the middle of the Borrmann triangle.
An additional shift at a distance of x, = —L0, is
required in the case of finite distance to correct the
change in the Bragg direction at crystal angular dis-
placement.

A correct choice of the beam center is especially
important in the case of thick crystal, because, due to
the Borrmann effect (anomalous transmission with
minimum absorption), only the beam part corre-
sponding to the middle of the Borrmann triangle
passes through the crystal. The axis can easily be
shifted by multiplying the integrand function by the
factor

(27)

Here, a possible displacement x,, of the step front edge
with respect to the middle of the Borrmann triangle is
additionally introduced. Just the step boundary begin-
ning is chosen as the center of the x axis of the coordi-
nate system.

F(q) = €Xp (lq[Leo - tl Sil’l GB + xO CcoS eB]) .

RESULTS AND DISCUSSION

Figure 3 shows the calculated intensity distribu-
tions in the inhomogeneous part of crystal (i.e., the
layer with step). The parameters are as follows: photon
energy E=#m = 10 keV (A = 0.124 nm); source—crys-
tal distance L = 2 m; thickness of the homogeneous
crystal part ¢, = 1 mm; step height on the exit surface
t, = 0.2 mm,; the step tilt angle 0 is determined from
the condition R = tan0/tanBz = 0.5; silicon crystal;
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Fig. 3. Maps of the two-dimensional distributions of rela-
tive intensities of the reflected (left panel, R) and transmit-
ted (right panel, 7) beams in the step region; #y = 0.2 mm
and x, = 68.2 um.

and reflection 220. Under these conditions Oy =
18.84°; therefore, © = 9.68°. The distance value used
in the calculation, can easily be implemented experi-
mentally using a narrow slit or a compound refractive
lens, which form a secondary source at a desired dis-
tance.

Figure 4 shows a schematic diagram of the step
boundary, with indication of the above-described
angles. The step boundary corresponds to the line
abde. This boundary changes the intensity inside the
Borrmann triangle acd. The reflected-beam intensity
R (Fig. 3, left panel) changes significantly only in the
triangle abd, whereas the transmitted-beam intensity
T (Fig. 3, right panel) changes within the entire Borr-
mann triangle (but differently in the regions abd and
bcd). Both panels are presented on the same color
scale for comparison convenience. The average
reflected-beam intensity at the lower boundary (i.e.,
at the thickness #,) is assumed to be unity. Note that
the diffraction-focusing thickness [12, 36] for the dis-
tance under consideration is 7, = L[x,|F = 60.8 um,
where F= 1/(sin Ogsin 263). Therefore, a part of radi-
ation with weak absorption is maximally compressed
at this thickness, then it diverges again, and exhibits an
almost uniform intensity distribution over the x axis
(along the surface) in the step region. In Fig. 3, the
displacement x;, = 0. The color map cannot reproduce
very small changes in the intensity because of the
absorption on the right from the step in the vertical
direction. However, one can note weak changes in the
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Fig. 4. Schematic diagram of the step and Borrmann trian-
gle, with indication of regions characterized by different
intensity distributions.

transmitted-beam intensity in the horizontal direc-
tion. It can be seen in Fig. 3 that the transmitted-beam
intensity in the Borrmann triangle near the step
changes significantly (but not as radically as the
reflected-beam intensity). In particular, the transmit-
ted-beam intensity in the area bcd changes only along
the direction transverse to the transmitted beam. In
fact, it is transferred from the straight line bd in the
transmitted-beam propagation direction. The inten-
sity distribution in the area abd is more complex; how-
ever, the maximum intensity is much lower than the
reflected-beam intensity in the same area.

The behavior of the reflected-beam intensity is
most interesting. It has a pronounced interference
character: the maximum exceeds the intensity before
the step by a factor of about 7. One might suggest that
this behavior is due to the fact that the step boundary
is closer to the left side of the Borrmann triangle (i.e.,
to the reflected-beam direction). A very strong inten-
sity redistribution, similar to the transmitted-wave
reflection at the step boundary, can clearly be seen.

Figure 5 shows the dependences of the intensities
averaged over a band equal to the Borrmann triangle
base on the z coordinate in the step region for the
transmitted beam (curve [), halved total intensity
(curve 2), and the reflected beam (curve 3). The
intensities are normalized with respect to the first
point of curve 3 for the reflected beam. It can be seen
that the average reflected-beam intensity even slightly
increases. However, the average transmitted-beam
intensity (curve ) drops sharply. The average total
intensity of both beams (curve 2) decreases linearly.
For curve 2, one can calculate the absorption coeffi-
cient along the normal to the surface: i = 15.8 cm™'.
For comparison, the normal absorption coefficient
Ho/Yo = 80.0 cm~! and the anomalous absorption coef-
ficient for plane waves at the Bragg angle is [,/Y, =

2.5 cm™~!. In other words, the step partially removes the
conditions necessary for implementing the Borrmann
effect. The total wave function of radiation is nonzero
Vol. 65
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Fig. 5. Dependences of the average relative intensities on
thickness in the step region for the (/) transmitted beam,
(2) halved total intensity, and (3) reflected beam; #, =
0.2 mm.

at the location point of atoms, and the absorption
increases. Note that the major part of the region under
consideration does not contain any material, which
corresponds to zero absorption. Absorption occurs
mainly in the abd triangle. At the same time, the
intensity is redistributed so that a part of transmitted-
wave radiation is transformed into the reflected wave,
which increases the reflected-wave intensity.

Figure 6 shows four fragments of the intensity dis-
tribution over the step height for different angles of
inclination. Actually, the parameter R was varied,
which took the following values: 0, 0.25, 0.5, and 0.75.
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All fragments are shown on the same color scale. It is
of interest that the width of interference fringes
decreases and their number changes only slightly with
a decrease in the width of the transition region from
the step boundary to the Borrmann triangle boundary.
The highest maximum corresponds to the narrowest
transition region. Moreover, in the narrow transition
region, the oscillation period also shortens along the
vertical axis, corresponding to the change in the crys-
tal thickness.

This result can hardly be explained at the qualita-
tive level. An analytical solution to this problem, yield-
ing the same result, will be reported in the second part
of the work. At the same time, the presence of interfer-
ence fringes with a short period makes it possible to
carry out precise measurements of various characteris-
tics (including diffraction parameters).

Here, we considered the version with step inclina-
tion towards the reflected beam. When the step is
inclined towards the transmitted beam, the roles of the
transmitted and reflected beams change. In this case,
patterns similar to those shown in Fig. 6 arise for the
transmitted beam. This was demonstrated in [37],
where a triangular cut on the exit surface was consid-
ered. The calculations show that the distributions in
Figs. 3 and 6 barely depend on distance (they are
almost the same at zero and extremely large dis-
tances). The only exceptions are the distances close to
the diffraction-focusing length. For a 1-mm-thick
crystal, this distance is 32.9 m.
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Fig. 6. Maps of two-dimensional distributions of reflected-beam relative intensities in the step region at different step inclination
angles (#, = 0.2 mm and x; = 68.2 um), with indication of the values of parameter R = tan 6/tan 6p.
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