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Abstract—A theoretical basis and a method of accurate computer simulations for studying the properties of
X-ray diffraction interferometer with one slit are formulated. The slit serves as a secondary source of coherent
divergent radiation, while the direct and reflected beams are split in space in a narrow gap between two crystal
blocks. The theory is formulated for an arbitrary distance between the secondary source and a detector. Two
most interesting cases are investigated in detail. It the first case the effect of diffraction focusing is realized for
a thickness of the first crystal at a relatively large distance. This case is equivalent to a two-slit interferometer.
In the second case, the distance is minimal, and thicknesses of the two blocks are equal. Here, an interference
pattern can be obtained at a less total thickness of the blocks, and the experimental scheme is more compact.
Analytical formulas for the interference fringe period and the beam widths under the Borrmann effect are

derived.
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INTRODUCTION

Optical interferometers have been applied for more
than two centuries in various measurements to solve
both practical and scientific problems [1]. To date,
interferometers of different types have been designed;
however, the first two-slit interferometer (known as
the Young interferometer) has become most popular.
In the case of diffraction from a slit with width d,
monochromatic radiation with a wavelength A
acquires angular divergence with a width o0 = A/d even
if a plane wave is incident on the slit. At diffraction
from two slits, the related beams begin to intersect at a
distance z, = x,/c along the optical axis, where X, is
the distance between the slits in the transverse direc-
tion. If coherent radiation passes through the slits, the
phase relations in different beams are consistent, and
interference fringes with a period p = Az,/x, (z; > 2, is
the distance from the slits to the detector) arise upon
addition of two fields.

For X-rays, the development of this interferometry
has been hindered for a long time in view of the
absence of coherent sources (i.e., rather small coher-
ence length and insufficient radiation brightness). The
situation changed in the middle of the 1990s with the
development of third-generation synchrotron radia-
tion (SR) sources (the first was designed in Grenoble,
France). Currently, there are many publications on
X-ray interferometry of different types. We should
note studies [2—7], where the most interesting inter-

ferometers based on compound refractive lenses [8]
were tested.

At the same time, X-ray optics provides a possibil-
ity of radically new interferometry based on X-ray dif-
fraction in single crystals [9]. A necessary condition
for operation of two-slit interferometer is as follows:
the beams must have sufficiently a high angular diver-
gence and intersect at a distance as small as possible.
For X rays in a standard Young interferometer, this
condition is difficult to fulfill because of the very small
wavelength A.

At the same time, it is known that, in the case of
two-wave diffraction in a single crystal, a beam
bounded by a narrow slit exposes the so-called Borr-
mann fan with an angle 205; 05 is the Bragg angle,
which may take any value from 0 to 90°. This fact was
experimentally found for the first time in [10] and the-
oretically explained in [11, 12]. Note that the beams
from two slits can interfere in a crystal with a thickness
smaller than 1 mm, forming periodic fringes with high
and low intensities.

Diffraction interferometry from two slits (i.e., an
analog of the Young interferometer, but implemented
in a single crystal) was investigated theoretically in
[13], where an analytical formula for the interference
fringe period was obtained: p = 2A ¢ tan?(0)/x, (x, is
the distance between the slits, A = Acos(0g)/|x,| is the
extinction length, %, is the diffraction parameter, and
tis the crystal thickness). The parameters p and x;, are
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Fig. 1. Scheme of the suggested experiment: (/) secondary
source in the form of slit, (2) first crystal, (3) second crys-
tal, (4) crystal for changing the reflected-beam direction,
and (5) detector.

measured in the direction parallel to the crystal sur-
face.

Although this statement of experiment deserves
attention, we should note its drawbacks. First, in any
experiment with two slits only a very small part of the
incident beam is used and, therefore, the light-gather-
ing power is low. Second, this scheme is spectrally
unstable if the distance Z between the slits and the
detector is not too small, i.e., it requires very high
monochromaticity of radiation. Note also that
another slit with a size smaller than the coherence
length should be placed before the two slits. The frac-
tion of coherent radiation in modern SR sources can
often be increased only by reducing the beam angular
divergence. However, such a beam cannot pass
through two slits and should be diverged anyway. If the
beam is wide, its coherence length is generally small,
and a slit must be used to select coherent radiation.

It is of interest that an interferometer without two
slits can be designed. One slit is sufficient for either
diverging a beam or selecting its coherent part. The
point is that, first, the diffraction in a crystal forms
simultaneously two beams (direct and reflected) and,
second, the diffraction focusing effect is present. This
effect was theoretically predicted in [ 14, 15] and exper-
imentally discovered right away in [16—18]. Later this
effect was investigated in [19, 20] for the case of dif-
fraction from two successive crystals spaced by a large
distance. As was shown in the first study [14] and in
subsequent works [21—24], for a specified crystal
thickness ¢, a spherical wave from a secondary source
with small transverse sizes is focused at a certain dis-
tance between the source and detector, Z= tFg/ly,l,

where Fp=sin0ysin(20;), in both the direct and
reflected beams.

Focusing occurs at a sufficiently large crystal thick-
ness #;, when the Borrmann effect is additionally pres-
ent. The essence of this effect is that the absorption
coefficient is many times lower for a part of radiation
and only this part can pass through the crystal, both in
the forward and reflected directions. Specifically this
part undergoes focusing, which occurs equally in both
beams, and the wave functions have an identical
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Fig. 2. Scheme illustrating the operation of polychromatic
focusing: (/) source of a spherical wave, (2) crystal in the
Laue reflection position, (3) crystal in the Bragg reflection
position, and (4) observation point.

phase. At the crystal output, two almost identical
beams with a very small transverse width propagate
(each in its own direction) and are split in space at a
distance of 2zsin(0p) in the direction perpendicular to
each beam (%, is the air gap thickness).

If the second crystal with thickness #, is placed in
their way, each of them will diffract again, exposing a
region in the crystal in the form of a Borrmann fan; the
intersection of these regions leads to interference. The
only difference from the experimental scheme with
two slits that was considered in [13] is that the direct
beam will diffract on the reciprocal lattice vector h (as
in the first crystal), whereas the reflected beam will
diffract on the vector —h. This situation is illustrated in
Fig. 1, where crystal 2 focuses the beams, which inter-
fere in crystal 3. Crystal 4 is required only to change
the reflected beam direction to the initial, which is
important for operation on SR sources.

An advantage of this scheme is the possibility of
polychromatic focusing effect for the reflected beam,
which was described in [25]. This focusing is imple-
mented at equal distances from the interferometer to
the source and the detector. Correspondingly, the
interference pattern has spectral stability; i.e., the
interference effect can be observed at a rather moder-
ate SR monochromatization. The polychromatic
focusing effect is illustrated in Fig. 2. Let the divergent
beam from point / be incident on crystal 2 to imple-
ment Laue diffraction. For a specified wavelength A,
the crystal is oriented so that the Bragg angle 6 corre-
sponds to the horizontal beam (the intermediate beam
in Fig. 2). It is reflected by angle 26 and, falling on
crystal 3, is reflected again (in the initial direction).

The Bragg angle decreases with a decrease in wave-
length. Note that the diffraction condition is now sat-
isfied for the lower beam in Fig. 2 and in another
region of the crystal. After reflection in crystal 3, this
beam becomes the upper one and, at point 4, it arrives
at the same point on the detector as the first (horizon-
tal) beam. The situation is the same with the increase
in the wavelength. In other words, all waves in the
wavelength range in which reflection from crystal 3
may occur arrive at the detector at the same point.
Hence, interference fringes can clearly be seen, and
the contrast is not deteriorated.
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Another advantage is that splitting of beams in
space occurs in this interferometer after their diffrac-
tion focusing, which does not lead to intensity loss;
i.e., this scheme has a high light-gathering power. The
above-described scheme is also of interest. It is pro-
posed for the first time in this study.

However, as a more thorough analysis showed, it is
not necessary to focus beams at the end of the first
crystal. The main features of the new interferometer
are the splitting of beams in space (i.e., in an air inter-
layer between the first and second crystals) and the
Borrmann effect (i.e., the selection of only one field,
which is weakly absorbed, out of two). One can also
consider other schemes; note that the interference
occurs at an arbitrary distance Z between the second-
ary source (e.g., slit) and the detector. If this distance
tends to zero (specifically, is sufficiently small), the
most clear interference occurs at equal thicknesses of
the first and second crystals.

In this study, we present the fundamentals of the
theory and the method of numerical calculation of
interference pattern in the above-described interfer-
ometer at an arbitrary relation between the distance Z,
crystal thicknesses, and the air-layer thickness; the
results of calculating the specific values of the param-
eters; and the analytical formulas derived for the oscil-
lation period and beam width.

THEORETICAL FUNDAMENTALS AND
METHOD OF COMPUTER SIMULATIONS

It was shown in [11, 14] that it is most convenient
to compute the X-ray diffraction in crystals by the
Fourier transform method. In the general form, this
method is as follows. First, the wave function (WF) of
X rays at the detector is calculated in the absence of
crystals (i.e., in real space and in the (x, z) diffraction
plane). The z axis is directed along the beam (from the
source to the detector), and the x axis is directed per-
pendicularly (across the beam). The distance between
the secondary source and detector is Z.

Then, this WF at the detector Eéo) (x) is presented as
an integral over plane waves, i.e., the Fourier trans-

form Eéo)(q) is calculated. Since a reflected (dif-
fracted) wave arises in the crystal upon diffraction, it is
convenient to take this circumstance into account at
the very beginning and introduce the wave-function

vector composed of two components: Eéo)(q) and

E”(q). Note that initially £\”(¢) = 0. The solution to
the problem of plane wave diffraction in a plate-
shaped crystal with a thickness #, was obtained long
ago; it can be found in textbooks (see, e.g., [26—28]).
This solution can be presented as a multiplication
of the matrix M, (q, t,) by the vector E,(g), where sub-
scripts i and k take two values (0 or 1). Thus, the solu-

tion at the detector Efl)(q) in the presence of one crys-
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tal with a thickness ¢, on the beam path can be written
in the form

E(q) = M (@.0)E" (). (1)
From here on, double subscripts indicate summation.

If there are several crystals on the beam pass, which
are tightly pressed against each other, one should
additionally perform multiplication for the second
crystal with a thickness #,:

EP(q) = MP(q,6)E(q), 2)

and so on for each next crystal. A layer of amorphous
material or just air may be located on the beam path
instead of a crystal. Such layers are also described by
the matrix M;(q, f) of special form. However, to make
this approach valid, it is suggested that the total thick-
ness of this complex is not too large. This is obvious for
crystals, because they absorb. For air layers, this sug-
gestion follows from the structure of the matrix in use,
because it is derived on the assumption of geometric
optics validity.

After carrying out multiplications for all layers, one
performs an inverse Fourier transform and obtains a
result in real space again (i.e., at the detector in the
diffraction plane, but with allowance for the system of
crystals). It is clear from the above-described calcula-
tion technique that the system of crystals can be
located at any place between the secondary source and
detector, because their position does not affect the
result if a symmetric reflection is used. In other words,
the observed interference pattern depends on only the
total distance Z. The crystals do not affect this dis-
tance.

In this study, we apply the general method to the
experimental scheme shown in Fig. 1. The secondary
radiation source is a narrow slit with a width d, on
which a plane wave is incident. The slit may have
either sharp or smoothed edges (this factor is easily
taken into account in the calculation). There is noth-
ing between the slit and detector, except for crystals.
The diffraction from a slit with sharp edges is calcu-
lated analytically. However, for generality, we will
consider the numerical method, which is convenient
for solving the above-considered problem of taking
into account the crystals.

Let the slit in real space be described by the WF
Y(x). We calculate the Fourier transform y(g), and
then the Fourier transform of the WF at the detector
can be written as

E) (@) = CiP(q, 2)¥(q),
where a normalization factor C, is introduced and

P(q,Z) = exp(—ihZq’ /4T) )
is the Fourier transform of the Fresnel propagator. At

C=02)", ()

this statement of the problem, we obtain Eéo)(q) at
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once, whereas inverse Fourier transform should be

performed to calculate Eéo)(x). However, one can deal
without it, if X-ray diffraction in crystals is of interest.
Multiplications shown in formulas (1) and (2) can be
performed immediately.

Below, the formulas for calculating the matrix
M, (q, ?) in the case of symmetric Laue diffraction are
presented:

My(q,t) = UIE, + r’E,],

(5)
MIO(q’t) = XhV[Ep - Em])
MOl(qat) = X—hV[Ep - Em]a (6)
My(q,H) =UIF’E, + E,],
where
U=0+r)", E,=exp(4+G0), o
E,=exp(A—G), V=028,
A=ilX,+a,lt/2y,), G =igt/2y,), ®
g= (o, +X"",
X=X, X = (o + 2)/X, ©
Xop—n = KXo p—n»
o, = (g — qy)sin(205), Y, = cos(6p). (10)

Here, the parameter g has a positive imaginary part by
definition; x,, ¥4, and x_, are the diffraction parame-
ters, which are Fourier components of the crystal
polarizability at the reciprocal lattice vectors 0, h, and
—h, respectively; 05 is the Bragg angle; K = 2r/A; and
the parameter g, = K0, describes possible deviation of
the crystal angular position from the Bragg angle.

Note that the diffraction matrix M;(q, f), deter-
mined from formulas (5)—(10), shows the angular
dependence of the intensity at plane-wave diffraction
in the crystal in such a form that the curves tend grad-
ually to a constant or to zero in their tails (i.e., at |g| >
X). This is convenient for plotting the functions. How-
ever, when calculating the Fourier transform, the dif-
fraction region (Borrmann fan) is located on the left
from the origin of coordinates, and this point corre-
sponds to the beam passage from the point source
along the incident-wave direction, which is inconve-
nient.

The situation is more convenient when the Borr-
mann fan is located symmetrically on the left and on
the right from the coordinate origin. In other words,
the coordinate origin should be shifted along the x axis
so as to be in the middle of the Borrmann fan. An addi-
tional shift by a distance x, = —Z8, should be per-
formed for a finite distance Z to correct the change in
the Bragg direction at an angular displacement of crys-
tal. A correct choice of the beam center is especially
important for a thick crystal, because only the part of
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the beam corresponding to the middle of the Borr-
mann fan passes through the crystal in this case
(because of the Borrmann effect). The coordinate ori-
gin is shifted in the program by multiplication (before
carrying out a Fourier transform) of the integrand
function by the factor

F(g) = exp(igl 28, — 1sin(6p)]). (11)
Nevertheless, the experimental scheme presented in
Fig. 1 should satisfy some additional requirements.
The point is that the most interesting interference pat-
tern occurs in the reflected beam if the polychromatic
focusing condition is satisfied, when the distances
before and after the interferometer are equal. Note
that the distance between the interferometer and
detector cannot be small if the diffraction focusing
effect is used for a relatively thick crystal.

As a consequence of these conditions, the reflected
beam at the detector can be significantly deflected in
the transverse direction from the optical axis. Since
SR sources provide little place in the transverse direc-
tion, these beam deflections should be corrected by
additional reflection by the same angle in the reverse
direction. To this end (as is shown in Fig. 1), one
should use a Bragg reflection from a thick crystal,
because a Laue reflection would violate the polychro-
matic focusing condition, in contrast to Bragg reflec-
tion (Fig. 2).

As the calculations show, an additional symmetric
Bragg reflection from crystal 4 in Fig. 1 barely deteri-
orates the interference pattern at a correct angular
position of the crystal. The symmetric Bragg reflec-
tion amplitude for a thick crystal with an inversion
center is also well known. We present it to show the
formula that was used in the calculation:

My(q) = (0 +a)/s, ©=(q— q)sin(26g) — il (12)

a=(" -5 s=Kyg. Mo=KIm(). (13)
Here, the imaginary part of parameter « is by defini-
tion larger than zero. Therefore, at large |g| values we
find that a is approximately equal to —6 and Mg(q)
tends to zero. In addition, g, = K@, where ¢ is the
angle of possible crystal deviation from the exact dif-

fraction position.

It is known [26—28] that, under conditions of
Bragg reflection, the center of the angular reflection
region is shifted by —Re(),)/sin(20y) if the crystal is
aligned strictly at the Bragg angle. This displacement
can be compensated by an additional crystal rotation.
It is assumed in formulas (12) and (13) that this com-
pensation has already been done, and the condition
g, = 0 corresponds to the crystal position where the
center of the angular reflection region is at the point
g = 0. Specifically this position of the reflector crystal
minimally deteriorates the interference pattern.
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Formulas (1)—(13) were used to write a computer
program for calculating the intensity distribution in
space before the detector at diffraction from two crys-
tals with thicknesses #, and #,, separated by an air layer
with a thickness 7,, and possible additional reflection
of the reflected beam in the direction of the forward
beam. The diffraction parameters were calculated
using the on-line program [29].

The computer program was written in the ACL lan-
guage [30]. Fourier integrals were calculated using the
fast Fourier transform (FFT) procedure [31], built in
the ACL. The code of this procedure in FORTRAN
has been known since the middle of the last century as
a part of the NAG library [32]. The calculations were
performed for the number of points N = 16384. The
point-grid step d, is specified, and the step
d,= Kdy=2m/(Nd,) and size Nd, of the computa-
tional box in reciprocal space should be sufficiently
large to make the integrand function zero at the edges
of the region.

RESULTS AND DISCUSSION

The developed program makes it possible to calcu-
late the angular dependence of intensity for the plane-
wave diffraction and different geometries of spherical-
wave diffraction. One can easily check an evident
result: if the air layer thickness is 7, = 0 and the first
and second crystals have identical structures and
atomic compositions, the calculation result for two
crystals coincides with that for one crystal with the
total thickness 2¢ =1, + t,.

In this study, we present the calculation results for
two cases. The first one corresponds to the diffraction
focusing in the first crystal. This case is similar to
Balyan’s interferometer [13]. Here, the first-crystal
thickness ¢, corresponds to the radiation focusing in
the detector plane in the absence of second crystal. At
some distance after the second crystal output, the
beams diverge in space, and each wave should be con-
sidered independently. It is easy to understand that the
doubly transmitted and doubly reflected waves inter-
fere in the direct beam, whereas the first transmitted
and then reflected and the first reflected and then
transmitted waves interfere in the reflected beam.

Accordingly, we obtain an asymmetric pattern in
the direct beam and a symmetric pattern in the
reflected beam. Figure 3 shows the result of calculat-
ing the interference pattern in the reflected beam with
a change in the second-crystal thickness, without
reflection from the third crystal, for following param-
eters: slit size d = 5 um, distance Z= 5 m, Ge crystal,
reflection 220, photon energy 25 keV (A= 0.0496 nm),
first-crystal thickness #, = 0.4 mm, and air layer thick-
ness £,= 0.25 mm. The range of variation in the sec-
ond-crystal thicknesses #; from 0.55 to 1.15 mm is
shown. It is assumed that SR is polarized in the plane
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Fig. 3. Two-dimensional distribution map of the relative
intensity in the reflected beam with the reflector crystal
disregarded, at different thicknesses 7 of the second crystal.
Calculation parameters were given in the text. Z=5m;
1y = 0.035, provided that the intensity at the detector with-
out crystals is unity.

oriented perpendicular to the diffraction plane. At the
aforementioned parameter values, 05 = 7.12°.

Since absorption in a crystal leads to a decrease in
intensity with an increase in the crystal thickness, all
values of relative intensity above the specified value /,
were replaced with [, to increase the contrast, which
effectively corresponds to going beyond the dynamic
measurement range of the detector. In Fig. 3, the [
value is chosen as half maximum of the value, which
occurs at the smallest crystal thickness. Note that
1, =0.023 if the intensity at the detector without crys-
tals is assumed to be unity.

One can see interference fringes of two types in the
figure. The first ones are at the edges of the Borrmann
fans for each beam at a small thickness #, of the second
crystal. They have a variable period and correspond to
interference of weakly and strongly damped wave
fields at diffraction of a spherical wave and a small dis-
tance from source to crystal. These fringes were stud-
iedin 1961 [11, 12]. They disappear with an increase in
the crystal thickness because of the absorption of
strongly damped wave field.

Second-type fringes are located at the center of the
pattern at large #, values. Low-absorption wave fields
from different sources interfere in this region. Hence,
they do not disappear at the center of the pattern even
at large thicknesses of the second crystal. This inter-
ference is similar to that observed in Young’s experi-
ment. However, two sources were formed in the air
gap because the crystal adds a reflected wave to the
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Fig. 4. Relative intensity distribution in the reflected beam
for the parameters given in Fig. 3 at the second-crystal
thickness of 1 mm. Curves / and 2 were obtained in the
calculations with the reflector crystal disregarded and
taken into account, respectively. The / value is 0.01 of the
intensity at the detector without crystals.

transmitted wave. The period of these fringes is pro-
portional to the crystal thickness and corresponds to
the formula derived in [13] (see Introduction).

In the calculation with allowance for the reflector
crystal, mounted at the exact reflection position,
interference fringes at large thicknesses barely change.
Only a very weak shift (by small fractions of the
period) of the fringes to the right is observed. At the
same time, the fringes at the edges of the Borrmann
fans are significantly blurred. The reason is that the
reflector crystal bounds the angular radiation range all
the same, which leads to reduction of high-frequency
changes in the intensity pattern.

The above-described situation is illustrated in Fig. 4,
where one can see the intensity distribution at the sec-
ond-crystal thickness of 1 mm. Note that the black
curve is obtained in the calculation with reflector crys-
tal disregarded and completely corresponds to the
cross section in Fig. 3. Curve 2is obtained with allow-
ance for the reflector crystal. One can see that the
intensity slightly decreases because of the incomplete
reflection by the third crystal. In addition, interfer-
ence fringes are slightly shifted on the whole to the
right. This displacement is not crucial; what is more
important is that the fringe period is retained.

It is of interest that, if the reflector crystal is moved
away from the exact reflection position, the reflected-
beam intensity sharply decreases, while the contrast is
deteriorated. Therefore, the crystal must be properly
aligned. However, the angular width of the reflection
region is quite sufficient for reproducing almost entire
interference pattern.

The second case corresponds to a small distance Z
from the secondary source to the crystal (specifically,
0.1 m). The diffraction focusing effect is completely
absent at this distance. An advantage of this scheme is
that one can deal without very thick crystals; there-
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Fig. 5. Relative intensity distribution in the (/) direct and
(2) reflected beams for the small distance Z=0.1 m at
equal thicknesses of the first and second crystals
(f,=1,=0.5mm) and the air gap thickness of 7,= 0.2 mm.
The I value is 0.0001 of the intensity at the detector with-
out crystals.

fore, the absorption loss is low. The point is that the
air-layer thickness should be increased to reduce the
oscillation period. At the same time, it is desirable to
obtain beams with a maximally large width so as to
make them intersect. In the above-described scheme,
all processes occur in the second crystal; in contrast,
the first crystal contracts the beams.

In the scheme with the minimum distance, both
crystals cause beam divergence; therefore, the beams
intersect at smaller thicknesses of the second crystal. It
will be shown in the next section that the best interfer-
ence in this scheme is achieved at equal thicknesses of
the first and second crystals (#, = #,). Figure 5 presents
curves of relative intensity in the (/) direct beam and
(2) reflected beam for the following parameters:
Z=0.1m, ,=1=0.5mm, and 7, = 0.2 mm. The [,
value is equal to 0.0001 of the intensity at the detector
without crystals. Such a small value is due to the fact
that the Borrmann effect occurs in a significantly lim-
ited angular region, which corresponds to a large dis-
tance.

One can see that nine interference fringes, whose
contrast rapidly decreases while moving away from the
center to the edges of the beam intersection region,
can be obtained at relatively small crystal thicknesses.
The fringe period can be given by the formula pre-
sented in the Introduction if the crystal thickness is
replaced with a sum of the thicknesses of two crystals.
This formula will be derived from the calculation for-
mulas in the next section. Note that a different deriva-
tion was given in [ 13]. Along with the period, the width
of the intersecting beams is also an important param-
eter; a formula for its estimation will also be given
below.
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ANALYTICS. FRINGE PERIOD
AND BEAM WIDTH

Let us consider the simplest and most interesting
case: a slit with a very small size, a very small distance,
and ¢, = t, = t. Note that the Fourier transforms of the
WEF after the slit and the Fresnel propagator can be
assumed to be unity (it is sufficient to consider only
the crystals). The angular dependence of the WF of the
reflected beam ,(g) consists of two terms, which have
the forms M ,M,, and M, M,, in the absence of air
layer. If there is an air layer with a thickness #,, each of
the two terms acquires a specific additional phase fac-
tor. As a result, we have

Vi(q) = M,(q,1)My(g,1) exp(—igx,)
+ M, (q,1)M (g, 1) exp(igx,),

where x, = £,sin(0p). The matrix elements M (q, 1) are
calculated from formulas (5)—(10).

(14)

Note that parameter G by definition has a negative
real part. The parameter A also has a negative real part.
Let the thickness #be so large that the Borrmann effect
is implemented. In this case, the function E, is much
smaller than the function E,, and can be equated to
zero. Then formula (14) can be rewritten in the form

vi(q) = F(Q)E,(q)[exp(igx,) + r’ exp(—igx,)], (15)

F(q) = —X,/Qg(L + 1)) (16)

The WF in real space is equal to the Fourier integral of
the expression

Vi) = [ (da/2m) expliaxv (@) (17)
With allowance for (7), we have two terms in the inte-
gral. Let us consider the first one, y,,(x). Here, the
most rapidly varying factor in the integrand is expo-

nential. It rapidly oscillates; therefore, the integral can
be estimated by the stationary phase method.

The essence of the method is that the main contri-
bution to integral (17) is from the region near the point
q,, where the phase @(g) of the exponential is almost
constant (i.e., the phase derivative is zero). Further-
more, the following approximations are made: the fac-
tor before the exponential is replaced with a constant
equal to the value at this point, and only zero and sec-
ond terms of the power series in g are taken into
account in the phase @(g) in the vicinity of this point,
because the first term is zero:

0q) = 0(gy) + (1/2)9"(90)(q — q0)"-

Here, ¢"(g,) means the second derivative of @(g) at
point g,.

(18)

The integral of this function is calculated analyti-
cally and equals to
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Vi) = Flg0)| Enla0)| 2mg"(@0)) "2
x exp(ip(q,) + im/4).

It follows from the above formulas that the phase is

®(q) = —2Im(G(q)) + g(x + x,). (20)

Here, it is taken into account that Re(A4(q)) leads to a
shift of the entire pattern as a whole in an undesirable
direction. It was assumed to be zero in the numerical
calculation to obtain a symmetric dependence relative
to the origin of coordinates. Therefore, it is also omit-
ted in this calculation. At the same time,

19)

Im(G(g)) = —tsin(0p)(¢” +¢.)",
q, = Re(X)/sin(20).

The sign depends on the way of determining the sign
of Re(X). It is chosen provided that Re(X) > 0.

Since the scheme operates under the Borrmann
conditions, one cannot deviate significantly from the
point ¢ = 0 (otherwise the absorption would rapidly
increase). We assume that g, < ¢g,. Then, instead of
(20), we find approximately that

21

©(g) = 2tsin(0p)q,(1 + ¢°/Q2q;) + q(x + x,).  (22)

The following solution is obtained from the equation
¢'(q)=0:

9o = —qu(x + x,)/(215in(8g)),

23
0" () = 15in(Op) /g, 23)

o) = @ — X" + x; + 2x6)/(4rsin(6p)),
Py = 2sin(0y)q.

The term in the phase of the function y;(x), which
changes sign with a change in the sign of x,, is of inter-
est. In addition, we generally have 7, < 2¢ and P =1in
the central part of the interference pattern.

Taking into account the aforementioned approxi-
mations, the sum of the two contributions to the WF of
the reflected beam at the center can be written as

i (x) = A(x, x,) cos(xx,q,/(2tsin(Bg)). (25)

The magnitude of this function oscillates with a period
2p, and the intensity (i.e., squared magnitude) oscil-
lates with a period p, where

p = Arsin(20g)/(x4|7,)-

Here, (9) and (21) are taken into account, and the x
axis (as in the calculation formulas) is oriented per-
pendicular to the beam direction. While moving away
from the center to the edges of the interference pat-
tern, 7 decreases, and the contrast becomes incom-
plete and then disappears at all. One can easily under-
stand from the presented derivation that the average

(26)
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value t = (¢, + 1,)/2 should be used if the thicknesses of
two crystals are not equal.

Another important parameter is the beam width in
space under the Borrmann conditions. At small crystal
thicknesses (when the absorption is of minor impor-
tance), a narrow beam exposes the Borrmann fan with
abase width of 21sin(0p) in the direction perpendicular
to the beam direction. However, absorption reduces
the width beam. At very large crystal thicknesses, the
intensity profile under the Borrmann conditions has a
Gaussian shape with the half-width

W = (C M/ )"

(27)
C, = (41n2/m)sin(0y)sin(20g).

Derivation of this formula in the general case of asym-
metric diffraction was given in [ 14]; a particular case of
symmetric diffraction and sigma polarization is pre-
sented in (27). Here, = (¢, + 1,)/2 (as above). The
parameter ), is a Fourier component of the imaginary
part of crystal polarizability.

In fact, the WFs of two beams interfere, and we are
interested in the half-width of the curve describing the
WF magnitude. It is wider by a factor of 2/2 = 1.414.
Note that formula (27) yields a correct value (consis-
tent with the numerical calculation) only at crystal
thicknesses larger than 5 mm for the parameters under
consideration. At smaller thicknesses, the values are
overestimated. For example, for a thickness of 1 mm,
it gives a value that is larger by a factor of 1.4 than that
calculated numerically.

CONCLUSIONS

Diffraction of X rays in a crystal under the Borr-
mann conditions forms two beams with approximately
identical properties. The air gap between two crystal
blocks separates beams in space, and the intersection
of the beams in the second block leads to their interfer-
ence. The most interesting situations arise in two
cases: (i) when implementing diffraction focusing of
the beams in the first block and (ii) at zero distance
between the secondary source (slit) and the block of
two crystals.

A method for calculating this interference was
developed, the results of numerical simulation were
presented, and analytical formulas for the radiation
intensity oscillation period and beam widths were
derived. The interferometer has spectral stability and
allows one to obtain precise values of diffraction
parameters and refractive indices of any materials,
which can be placed on the beam path in the air gap.

The oscillation period is proportional to the part of
the summary thickness of crystal blocks that is located
after the focusing thickness. This part equals to the
second-block thickness in the first case and to the total
thickness of two blocks in the second case.
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