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Abstract—A new version of X-ray diffraction interferometer in a single crystal is studied theoretically. This
device is similar to the Young interferometer with two slits, but, instead of slits, it is proposed to use a bilens
interferometer based on compound refractive lenses, which have already been created and are used in prac-
tice. The crystal makes it possible to reduce radically the interferometer sizes and provides additional possi-
bilities for increasing the measurement accuracy. The features and structure of interference fringes, as well as
the possibilities of practical use of the new-type interferometer are analyzed. Numerical calculations were
performed using a universal computer program, which is being developed to solve a wide range of problems
in X-ray optics.
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INTRODUCTION

Visible-light interferometers belong to the most
accurate instruments for measuring physical con-
stants. In particular, the Michelson interferometer was
used to prove the theory of relativity and constancy of
speed of light at any speed of the source. Many differ-
ent types of interferometers are used in science and
technology; however, the most popular is the simplest
one, specifically, the double-slit interferometer,
known as the Young interferometer [1]. If a plane
monochromatic wave with a wavelength λ is incident
on a slit with a width d, the radiation transmitted
through the slit acquires angular divergence with a
width α = λ/d. This effect is known as diffraction.

Under conditions of double-slit diffraction, the
beams from the slits begin to intersect at a distance
z0 = x0/α along the optical axis, where x0 is the dis-
tance between the slits in the transverse direction. The
phase relations in different beams are matched for
coherent radiation. Therefore, addition of the fields
from two slits leads to the occurrence of interference
fringes with a period p = λz1/x0, where z1 > z0 is the
distance from the slits to the detector.

The development of interferometry in X-ray optics
was held back for a long time by the absence of coher-
ent sources (more exactly, by their fairly small coher-
ence length and insufficiently high brightness). The
situation changed in the middle of the 1990s due to the
development of third-generation synchrotron radia-
tion (SR) sources; the first of them was the facility in
Grenoble (France). These sources have a sufficient

brightness and high coherence. To date, many studies
devoted to different versions of X-ray interferometry
have been published. The most interesting interferom-
eters based on planar compound refractive lenses
(CRLs) for SR sources and X-ray free-electron lasers
were described in [2–7]. The term “CRL” was intro-
duced in the pioneer work [8].

The specificity of X rays is that they make it possi-
ble to develop radically new interferometry based on
the X-ray diffraction from the lattice in single crystals
[9]. In the case of a double-slit interferometer, the
beams must have sufficiently high angular divergence
and intersect at a distance as small as possible. With-
out crystals, this is difficult to implement for hard
X-rays because of their very small wavelength λ.

The situation can be improved using two-wave
Laue diffraction from a single-crystal lattice. In this
case a narrow beam exposes the so-called Borrmann
fan with a vertex angle 2θB, where θB is the Bragg
angle, which may take any value from 0° to 90°. This
fact was experimentally revealed for the first time in
[10] and explained theoretically in [11, 12]. The beams
from two slits may interfere in a crystal less than 1 mm
thick, forming periodic fringes with high and low
intensity.

X-ray diffraction interferometry (XDI) in a single
crystal was described theoretically for the first time in
[13] for the double-slit scheme (analogue of the Young
interferometer); the following analytical formula was
derived for the interference-fringe period:

(1)= Λ θ2
B 02 ( )tan / ,p t x
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Fig. 1. The main part of the possible schematic of the
experiment: (1) bilens interferometer based on planar
CRLs, (2) single crystal, and (3) beam overlap region.
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where x0 is the distance between the slits,
Λ = λcos(θB)/|χh| is the extinction length, t is the crys-
tal thickness, and χh is the diffraction parameter. The
parameters p and x0 are measured in the direction par-
allel to the crystal surface.

This statement of the experiment deserves atten-
tion; nevertheless, it has a number of drawbacks. The
main is that only a very small fraction of incident beam
intensity is used in any double-slit experiment, and the
luminosity is low for this reason. Another type of
interferometer was proposed in [14], in which spatial
beam separation occurs in the air gap between two
crystal blocks. The point is that the diffraction from a
single crystal lattice forms at once two beams (direct
and reflected).

In addition, there is a diffraction focusing effect,
which was first predicted theoretically in [15, 16] and
then revealed experimentally in [17–19]. This effect
was investigated later [20, 21] for the case of diffraction
from two successive crystals separated by a large dis-
tance. When using the diffraction focusing effect, an
analogue of the Young interferometer is implemented
in the second block after spatial separation of the
beams focused in the first block.

It was noted in [14] that an interference pattern is
obtained even without beam focusing. It is fairly sim-
ple to separate beams in space using an air gap between
two blocks. It is of interest that an experiment of this
type was already performed more than 50 years ago
[22], and interference fringes were observed. However,
this method was not developed at that time.

In this paper we discuss another way to improve the
model of double-slit interferometer proposed in [13].
The idea is to align a two-lens interferometer based on
planar CRLs with diffraction in a crystal. A two-lens
interferometer can form an interference pattern in
space without a crystal, as was clearly demonstrated in
[2, 3, 7]. However, the pattern is observed at a rather
large distance from the interferometer. This distance
can be reduced to zero using a crystal. In addition, this
approach allows one to study the parameters of the
crystal itself.

In this work we analyze also the possibility of mea-
suring accurately the refractive indices of different
materials using the new-type interferometer, based on
CRYSTALLOGRAPHY REPORTS  Vol. 67  No. 7  202
the shift of interference fringes, as well as the new type
of imaging microscopic objects and gas capsules in
crystals.

SCHEMATIC OF THE EXPERIMENT 
AND METHOD OF NUMERICAL 

CALCULATION

Figure 1 shows the main part of the experimental
scheme that can be implemented on SR beamlines.
It is assumed that the radiation from a source passes
through a monochromator (omitted in Fig. 1), which
selects the necessary wavelength, and then is focused
by a bilens interferometer (1) at two points on the crys-
tal surface. The crystal (2) is oriented so that its
reflecting planes make a Bragg angle θB with the prin-
cipal beam direction, an a triangular region with an
angle 2θB is exposed in the crystal. In the symmetric
case (considered here) these planes are oriented per-
pendicular to the input crystal surface.

When a crystal is illuminated with a CRL-based
interferometer, the regions of illumination from differ-
ent foci overlap at some distance from the surface, and
a region is formed in which both beams interfere (3).
It is reasonable to place a detector (is not shown) as
close as possible to the output crystal surface. This
must be done to reduce the influence of the SR spec-
tral width after the monochromator. The point is that
the Bragg angle changes with a change in wavelength,
which leads to the undesirable effect of shifting the
entire pattern in the perpendicular direction when the
distance between the crystal and detector is fairly
large.

The experiment was simulated using the universal
computer program XRWP1 [23], developed to study
theoretically various experimental schemes on SR
sources. The methods for simulating different schemes
of phase contrast and SR beam focusing using the
refraction effect [24] and diffraction in single crystals
have been developed most thoroughly.

The program implies that a narrow SR beam passes
along an almost straight-line path from a source (hav-
ing small transverse sizes) to a coordinate detector,
measuring the intensity distribution in the transverse
plane. The Z axis of the Cartesian coordinate system
coincides with the beam propagation direction. The
two-wave diffraction in crystal and planar CRLs
change the intensity distribution in the XZ plane,
whereas no changes occur along the Y axis. For this
reason we will consider only the dependence on the
coordinate x along the X axis.

If the CRL focal length exceeds several times the
CRL length or is even larger, one can apply with rea-
sonable accuracy the approximation of phase contrast
theory, where one CRL is described by the transmis-
sion function T(x):
2
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(2)

Here, K = 2π/λ is the wave number; δ – iβ = 1 – n,
where n = χ0/2 is the complex refractive index, taking
into account also the absorption of the beam propa-
gating through the crystal; t(x) is the thickness of the
CRL material for the ray with a coordinate x; R is the
curvature radius of the parabolic surface of one CRL
element; t0 is the thickness of the thin layer of material
between the two surfaces; and N is the number of
biconcave CRL elements.

Equation (1) is applicable for the region satisfying
the condition |x| < xa, where xa is half of the CRL aper-
ture. Another equation is valid in the region |x| > xa:
T(x) = T(xa) (if the incident beam is wide). The CRLs
are often accompanied by a slit which opens only the
apertures. Then T(x) = 0 for the regions closed by the
slit.

Let us denote the wave function (WF) of the radia-
tion incident on the interferometer as (x). This
may be the transverse part of a spherical wave from a
point source or a more complex function, taking into
account the change in the WF after its transmission
through the objects installed on the path from the
source to the CRL. The equation for the WF directly
after the bilens CRL-based interferometer has a rela-
tively simple form:

(3)
where xs is the distance between the CRL centers in
the interferometer.

The change in the WF during propagation of radi-
ation in empty space along the Z axis is described
based on the Huygens–Fresnel principle and reduced
to calculation of the convolution of the WF with the
Fresnel propagator. All convolutions in the program
are calculated by the Fourier transform method. The
convolution of two functions in real space is known to
be equivalent to their product in reciprocal space. The
Fourier transforms of the functions will be denoted by
the same letters, but the argument will be q.

Correspondingly, the WF at some distance z1 from
a CRL has the following Fourier transform:

(4)
The Fourier transform of the Fresnel propagator has
the analytical form

(5)
It is also convenient to describe the diffraction of

radiation from a single crystal lattice in reciprocal
space, i.e., for plane waves. In this case, the WF of the
incident radiation is transformed into a vector func-
tion consisting of two components: along with the
incident wave there arises a reflected wave, whose
direction differs by the angle 2θB from the incident

= δ β
= + 2

0

( ) ( [ ] ( ))exp – – ,

( ) ( )/ .

T x iK i t x

t x N t x R

(0)
0E

= + +(1) (0)
0 0( ) [ ( )– /2 /2 ,( )] ( )s sE x T x x T x x E x

=(2) (1)
0 1 0,( ) ( ) ( .)E q P q z E q

= λ π 2( ) (, exp – /4 .( ) )P q z i z q
CR
wave direction. In this study we analyze specifically
the reflected wave, which arises for monochromatic
radiation only when the crystal is correctly oriented.

At the crystal output this wave has the following
Fourier transform:

(6)
Here, tc is the crystal thickness, and the matrix ele-
ment of transition from transmitted to reflected wave
has the analytical form [14]

(7)
where

(8)

(9)

Here,  = ,  are the diffraction
parameters, i.e., the Fourier components of the crystal
polarizability on the reciprocal lattice vectors 0, h, –h;
q0 = Kθ0; θ0 is the angular deviation of crystal from the
Bragg angle; and γ0 = .

The coordinates x and q in all equations are
counted in the direction perpendicular to the SR beam
direction. As was noted in [14], the function in recip-
rocal space must be additionally multiplied by the
phase factor

(10)
to make the Borrmann fan center coincide with the
origin of coordinates.

The dependence (x) is obtained from (q)
using the inverse Fourier transform. The direct and
inverse Fourier transforms are calculated on point
grids with a constant spacing. The number of grid
points is n = 2k, where k is an integer. The spacings in
direct and reciprocal spaces (dx and dq, respectively)
are related as follows: dxdq = 2π/n. This is necessary
for using the fast Fourier transform method [25] in its
optimal version, although sometimes the number of
points may be rather large. In this study we consider
the coordinate dependence of the reflected beam
intensity at the crystal output, i.e., the function
I1(x) = | (x)|2. The number of points for the plot in
a specified interval can easily be obtained by interpo-
lation from the calculation array.

CALCULATION RESULTS AND DISCUSSION
Among the existing bilens interferometers for XDI,

the most appropriate is the first one, which was pre-
sented in [2]. CRLs are made of silicon, with a length
of one element of 102 μm, an aperture A = 50 μm, and
a curvature radius R = 6.25 μm. The distance between
the centers of two CRLs is xs = 60 μm. Calculation

=(3) (2)
1 10 0, .( ) ( ) ( ) ( )cE q F q M q t E q

= +10 , /2 exp –exp – ,( ) ( )[ ( ) ( )]c hM q t X g iA iG iA iG

= + α γ = α + 2 1/2
0 0/2 , ,( ) ( )q c qA X t g X

= γ =
α = θ

1/2
0 –

0 B

/2 , ,
– sin 2 .

( )
( ) ( )

c h h

q

G gt X X X
q q

0, ,–h hX χ0, ,–h hK χ0, ,–h h

θBcos

= θB( ) ( )exp – sincF q iqt

(3)
1E (3)

1E

(3)
1E
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Fig. 2. Intensity distribution in the beam overlap region for
a 0.8-mm-thick silicon crystal; reflection 220; photon
energy 10 keV; and CRLs with an aperture of 50 μm, a cur-
vature radius of 6.25 μm, and a distance between centers of
60 μm (see details in text).
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was performed for a silicon single crystal, photon
energy E = 10 keV, and reflection 220. In this case,
θB = 18.8°, and the CRL focal length is 6.33 cm. The
diffraction parameters  were obtained using the
on-line program reported in [26].

Figure 2 shows the intensity distribution in the
reflected beam directly at the output of a crystal of
thickness tc = 0.8 mm. A point grid with n = 215 = 32768
and dx = 0.02 μm was used for calculation. The coor-
dinate x is counted in the direction perpendicular to
the beam direction. The distances in this direction are
obtained from the distances along the crystal surface
as a result of multiplying by the factor cosθB. Corre-
spondingly, the Borrmann fan base is 2tc = 517 μm.
The interference region size is 60 μm smaller.

The simplest interference fringes were obtained for
relatively thick crystals, when the field with a large
absorption coefficient has a very small amplitude.
As a result, there remains only the field for which
standing wave nodes are located between atoms and
the absorption sharply decreases (the Borrmann effect
[27]). In this case the maximum intensity for one nar-
row beam corresponds to the middle of the Borrmann
fan base, and the intensity decreases during the
motion to edges [14].

The maximum oscillation amplitude is obtained
approximately at the center of the overlap region. The
parameter I0 in Fig. 2 is equal to 2 × 10–4 if the radia-
tion intensity before CRL is assumed to be unity. The
intensity loss is due to the interference of rays with a
relatively large absorption coefficient in the crystal. An
interesting feature of XDI is the variable oscillation
period. Equation (1) for the oscillation period (see
above) is valid for only the central part of the XDI
region. In this case it has the form

(11)

χ0, ,–h h

θBsin

( )= λ θ θ χ –12
B B2 cos sin ) .(с h sp t x
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Substituting numerical values of all parameters, we
obtain p = 54.4 μm, which is in good agreement with
the calculation result (Fig. 2).

In Fig. 2 one can easily find both the total size of
the interference region, equal to ~460 μm, and the
total size of the illuminated region in the Borrmann
fan, equal to ~580 μm. The intensity beyond the latter
region is zero. One can also see that the central peak is
lower than the neighboring ones. In the case of dou-
ble-slit diffraction this does not hold true: the central
peak is always higher. The reason for this anomaly is
the same as for the interference in air [7]. The point is
that the intensity of the beams decreases because of
their large divergence at the focus: it becomes compa-
rable with the intensity of the radiation passing
through the bridge between the CRL aperture edges;
the width of this bridge is 10 μm. This additional radi-
ation distorts the central interference peaks, and they
acquire a more complex shape.

Another feature of XDI is that one cannot obtain
many interference bands by varying parameters. For
example, the period decreases with an increase in the
distance between sources (foci). However, the overlap
region also decreases in this case (at reasonable crystal
thicknesses). At the same time, the period decreases
linearly with a decrease in wavelength λ. But the width
of the illuminated region decreases in the same way in
this case.

From the point of view of practical application of
this interferometer, it is useful to have a sufficiently
large period, which can be measured with high accu-
racy. The resolution of modern coordinate detectors
may be better than 1 μm. If all other parameters are
known independently, measurements of the period
can be used to calculate directly the diffraction param-
eter for the crystal in use. This is possibly not so inter-
esting because the crystal should have a perfect lattice,
and such crystals (silicon, germanium) have been
studied well.

A more interesting fact is that the interferometer
makes it possible to measure the phase shift when a
narrow beam passes through a layer of any material.
An object can be installed before the crystal at one of
the interferometer foci. Figure 3 shows the structure of
interference fringes for the case where the phase in the
left beam changed by –π. Specifically, in the calcula-
tion, an object in the form of a boron fiber with a
round cross section and diameter of 13.78 μm was
installed before the crystal. Since the fringes in the
two-dimensional pattern are obtained in the form of
vertical bands with a height equal to the CRL etch
depth (70 μm for the interferometer under consider-
ation), the object can be inserted at the middle of this
height, and the fringe shift will clearly be seen in the
pattern recorded by the detector.

It is of interest that, when the fringes undergo a
shift, their number on the left and on the right remains
the same, but the symmetry is violated. The left peak
2
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Fig. 3. Intensity distribution in the beam overlap region for
the same parameters as in Fig. 2 at a phase shift of the radi-
ation WF in the left focus by –π. 
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Fig. 4. Schematic showing coordinates when scanning
object along the crystal surface. Illustration of the method
for determining the dependence of object thickness during
object scanning.
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becomes higher than the right one. The reason in the
same as in the case considered above, i.e., the pres-
ence of a bridge between the CRL aperture boundar-
ies. Another specific feature of XDI is the fact that,
when the phase shift in the left beam is negative, the
peaks also shift to the left, whereas in air peaks shift to
the right. The point is that the Fresnel propagator
increases the phase with an increase in the beam path
length, whereas the propagator crystal, vice versa, has
the maximum phase at the center of the Borrmann
fan, and the phase decreases when moving to its edges.
For this reason, while the phase in the left beam
decreases when the latter enters the crystal, the point
at which this decrease is compensated is closer to the
center of the left Borrmann fan. Accordingly, the cen-
tral peak, corresponding to the equality of phases of
the beams from two foci, shifts to the left, and its
height increases.

The possibility of measuring the band shift with a
change in the phase difference between the beams in
the left and right interferometer arms gives rise to
another version of the phase contrast method, in
which the inverse problem is solved extremely easily.
If the chemical composition of an object is known, the
shift of the interference bands depends on only the dif-
ference in the object thicknesses at the points of object
illumination by narrow beams before entering the
interferometer crystal. Shifting the object in the direc-
tion perpendicular to the beam axis or simply along
the crystal surface, one can record a coordinate
dependence of the difference in thicknesses.

Let the origin of coordinates on the X axis corre-
spond to the left beam, the object have a transverse
size S, and the distance from its right edge to the left
beam be s. The band shift to the left is proportional to
the difference in the object thicknesses in the left and
right beams: Δ = to(0) – to(xs). When the object moves
from left to right, the difference is zero if s < 0. In this
case the object does not intersect the beams. In the
CR
range 0 < s < xs the object intersects only the left beam,
and the difference is Δ = to(0). In this case we obtain at
once the object thickness at a distance (S – s) from its
left edge. Thus, this method makes it possible to deter-
mine the object thickness in the range from (S – xs) to S.

The situation is illustrated by Fig. 4. The above-
described case refers to the object position denoted
as 2. In the range xs < s < S the object intersects both
beams. This situation is denoted as 1; it may occur
only at xs < S. In this case the object thickness at a dis-
tance (S – s) from the left edge is calculated by sub-
tracting Δ from the thickness at a distance (S – s + xs),
which is known from previous measurements. Hence,
the thickness in the range from 0 to (S – xs) can be
determined. Thus, one can determine the thickness of
an object on its entire transverse size. If S < xs, it is suf-
ficient to scan the object before the left beam. The
obtained coordinate dependence of thickness can be
used to determine the internal object structure using
tomography [28] in the following way: to collect the
coordinate dependences of thickness while rotating
the object in the range from 0° to 180° with a small
step.

This method is most preferred for studying micro-
pores in crystals of silicon carbide (SiC) [29], sapphire
(Al2O3), and some other compounds. The point is that
pores are often very small, and magnification must be
applied to determine their transverse sizes. In this
technique the detector measures the longitudinal size,
while the transverse size is measured by simple object
displacement. Magnification for the longitudinal size
can be implemented due to the larger fringe shift. In
particular, the fringe shift with a change in the phase
by π can be increased when passing to higher diffrac-
tion orders.

Figure 5 shows the calculation results for reflection
440, with the same values of other parameters. In this
calculation the grid spacing is dx = 0.04 µm. Curve 1
YSTALLOGRAPHY REPORTS  Vol. 67  No. 7  2022
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Fig. 5. Intensity distribution in the beam overlap region for
the same parameters as in Fig. 2 but for reflection 440. The
WF phase shift in the left focus is 0, –π/2, and –π for
curves 1, 2, and 3, respectively. 
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corresponds to zero phase difference. In this case the
Bragg angle is θB = 40.22°, and the oscillation period
is 275 µm, i.e., larger by a factor of 5 than for ref lection
220 at the same crystal thickness. However, the inten-
sity decreased by a factor of 10, because the I0 value is
the same as in Figs. 2 and 3. The curve is symmetric,
and the number of interference fringes is fairly small.

Curve 2 corresponds to the WF phase shift by –π/2
in the left focus. Curve 3 corresponds to the shift by –π.
It is of interest that the asymmetry of the second and
third curves turned out to be opposite. The left peak is
larger than the right one at small shifts, and vice versa
at large shifts. The calculation results clearly show
that, despite the very small number of interference
fringes, measurement of their shifts makes it possible
to determine with high accuracy the small phase shift
formed by a microscopic object.

CONCLUSIONS

It was shown that the combination of a bilens inter-
ferometer based of CRLs for focusing SR beams with
symmetric Laue diffraction in a single crystal opens
new possibilities for precise measurements of both the
crystal parameters and the phase difference between
the WFs in different foci of the interferometer. The
phase difference can be formed by inserting micro-
scopic objects or large objects with microscopic viola-
tions of material density.

In fact the method proposed is a new modification
of the phase contrast method, in which the inverse
problem is solved extremely simply. Although the
number of interference bands cannot be made arbi-
trarily large, even several peaks at the center are suffi-
cient to obtain useful physical information with a
rather high accuracy. The proposed method can be
widely used in many fields of science and technology:
from physics of materials to biophysics.
CRYSTALLOGRAPHY REPORTS  Vol. 67  No. 7  202
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