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Abstract—A new scheme for the numerical solution of Takagi–Taupin equations, which makes it possible to
simulate the effect of synchrotron radiation diffraction in crystals of arbitrary structure, is described in detail.
The new scheme is convenient to perform calculations for crystals of arbitrary shape. The rectangular coor-
dinate system and the algorithm for calculating derivatives at half of step have proven their efficiency and are
used, but the recurrence equations of this algorithm have been modified towards simplification. The bound-
ary conditions are in no way related to the crystal boundaries. A computer program is developed, and two
examples are considered for the cases of diffraction in the Laue and Bragg geometries, for which the analytical
solutions are known. The calculation results are in complete agreement with these solutions.
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INTRODUCTION
The effect of X-ray diffraction in crystals was

revealed experimentally soon after discovering X rays;
i.e., at the beginning of the XX century. As is well
known [1, 2], the experimental results obtained at that
time were inconsistent with the predictions of the first
diffraction theory, developed by Darwin, and then
with the predictions of the more general Ewald theory,
elaborated by Laue to the modern form. The theory
was developed for large perfect crystals, while the
crystals were imperfect in that time. Specifically, they
were polycrystals, in which small-size regions having a
perfect structure, and the samples studied consisted of
many such domains with different orientations.
In addition, the radiation was incoherent, as a result of
which different parts of a sample diffracted radiation
independently.

The X-ray diffraction under these conditions was
referred to as kinematic, and calculations were per-
formed on the assumption that the diffracted wave has
a low intensity and does not affect the incident wave.
The Ewald–Laue theory takes into account this influ-
ence; and this continuation leads to a number of inter-
esting features of the effect itself. The X-ray diffraction
under conditions of mutual influence of transmitted
and diffracted waves was called dynamic. Neverthe-
less, even the kinematic theory of X-ray diffraction
has played a very important role in the development

of crystallography and continues to be highly
demanded [3].

The problem with coherence was solved in 1959 [4]
in the scheme of experiment in transmission (Laue
geometry), using a narrow slit transmitting an X-ray
beam with a transverse size of no more than 10 μm.
Under these conditions radiation penetrates a thick
crystal within a Borrmann fan. Extinction bands were
observed at the center of this fan; i.e., the coherent
effect of interference of waves with different refractive
indices was observed. However, to describe this exper-
iment, it was necessary to modify the theory devel-
oped initially for incident plane waves.

This was done for the first time by Kato [5] in 1961;
he used the Fourier transform of the X-ray wave func-
tion. In the next year Takagi [6] proposed a more uni-
versal modification of the theory in the form of a sys-
tem of differential equations, which are simpler than
the initial Maxwell equations but take into account
in full measure the dynamic effects characteristic of
the X-ray diffraction in single crystals. However, no
solution to these equations was presented. In 1964
Taupin proposed the same equations, and then
applied them for the first time for numerical calcula-
tion of the X-ray diffraction in a crystal with a disloca-
tion [7]. As a result, the abbreviation TTE (Takagi–
Taupen equations) was assigned to these equations.
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Many publications appeared in the next years,
which reported results of numerical calculations of
images of single crystals in the form of a plate, con-
taining single structure defects, such as dislocations,
stacking faults, etc., as well as a plate subjected to
external impacts, for example, bending or point pres-
sure on the plate surface. Methods of numerical solu-
tion of TTE were applied. Discussion of the results of
these studies, as well as the corresponding references,
can be found in reviews [8–10].

It was also shown that the solution to TTE for a
perfect crystal with arbitrary boundary conditions can
be presented in the form of integrals over the crystal
boundary of the product of the X-ray wave function at
the boundary and the so-called influence function,
which is the solution to TTE for a point source on the
boundary [1, 2]. Influence functions were obtained for
the Laue geometry with an arbitrary crystal boundary
and the Bragg geometry for a crystal in the form of a
plate of finite thickness. A typical example of using
these solutions was published in [11, 12]. References to
the preceding publications can also be found there.

Concerning the methods of numerical solution of
TTE, the method denoted as HSD (half-step deriva-
tive) in [13] was most thoroughly developed. It uses
the rectangular coordinate system with a boundary on
the crystal surface and different steps over axes along
the surface and perpendicular to it. In the Laue geom-
etry the X-ray wave function is calculated from the
input surface of crystal plate (X axis) to the output sur-
face on the lines parallel to the plate surface; i.e.,
a solution for a plate whose thickness contains an inte-
ger number of steps over the normal to the surface
(Z axis) at each step. Only lattice strains were generally
investigated.

In the case of Bragg geometry the boundary condi-
tions were considered both on the input surface and on
the lateral crystal surface on a line along the incident
beam direction. Two opposite schemes were used in
the calculations, specifically, a convergent scheme for
the incident plane waves and a divergent scheme for a
source on the surface. In the first scheme the input
(incident) beam was coherent on a large but finite
fragment of the X axis, while the result was obtained on
a smaller interval, because at each step along the Z axis
the interval along the X axis decreased by one step.

However, for many years it was impossible to
obtain a coherent wave with a wide front under labora-
tory conditions. For this reason narrow beams at the
input were considered, which illuminated a crystal
within a Borrmann fan. In this scheme, at each step
along the Z axis the interval along the X axis increased
by one step, and initially the X-ray wave function dif-
fered from zero at few points on the X axis. At other
points the function was zero; i.e., was also known.
The development of synchrotron radiation sources
extended the possibilities of studying the diffraction
effect in crystals. It became possible to study crystals
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of relatively small sizes and arbitrary shape [14]. On
the other hand, publications appeared in which other
methods for solving TTE were developed (see, e.g.,
[15, 16] and references therein).

However, it was noted in 1971 [17] that it is reason-
able to select three regions in a crystal, which can be
considered separately: the region of perfect crystal, the
region of deformed crystal, and the region in which
diffraction is completely absent. It is natural to
develop this concept and supplement the crystal
model with regions that may contain a material with
another density and even voids, as occurs in silicon
carbide crystals [18] or crystals of complex shape [19, 20].

In this paper we propose and describe in detail a
new method of numerical solution of TTE, which can
be applied to crystals of arbitrary shape and structure.
The rectangular coordinate system and the HSD algo-
rithm [13] proved their efficiency and are used, but the
recurrence formulae of this method are modified.
A new feature is that the boundary conditions are set
on the X axis, which is in no way related to the crystal
shape. The solution is obtained successively when
moving along the Z axis, which is parallel to the
reflecting atomic planes of the crystal.

The space in which TTE are solved may contain
both regions with a lattice and non-diffraction regions
with different density and structure, including voids.
Diffraction occurs only at a very small deviation of
interplanar spacing or orientation of planes from the
state in which the Bragg condition is satisfied. A com-
puter program implementing the proposed method
has been developed. Two cases of diffraction in a rect-
angular crystal, in which one face of a smaller size (end
face) is parallel to the X axis and the lateral faces are
parallel to the Z axis, were considered as application
examples. In the first case a narrow incident beam
enters a crystal from the end face. The Laue geometry
is implemented initially, and then the crystal lateral
faces change the diffraction conditions. In the second
case a wide beam is incident on a plate lateral face; this
situation corresponds to the Bragg geometry. More
complex problems will be considered elsewhere.

METHOD OF NUMERICAL 
SOLUTION OF TTE

Let us define half-space as a set of all coordinates x
and only positive coordinates z of the rectangular
coordinate system, as shown in Fig. 1. In the two-wave
case of diffraction the result is independent of the
y coordinate if the medium is homogeneous in this
direction. Otherwise, the dependence on this coordi-
nate has a parametric character and is trivially taken
into account. This half-space contains regions of arbi-
trary shape with a lattice containing atomic planes ori-
ented parallel to the Z axis, with a certain interplanar
spacing. These planes can be presented by the recipro-
cal lattice vector h lying in the (XZ) plane.
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Fig. 1. Rectangular coordinate system and grid of points
for numerical solution of TTE within the convergence
scheme. The wave function is set on (Nx + Nz) segments
along the X axis at the input (z = 0). At the output, after Nz
steps along the Z axis, the answer is obtained on Nx seg-
ments.
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The slowly varying complex amplitudes for the
plane waves with the wave vectors k0 and kh = k0 + h
are known on the X axis at z = 0. The parameter α =
(  – 1) has a very small value, comparable with
the real part of the complex diffraction parameters χ0,
χh, and χ–h , which are equal to the coefficients of the
Fourier series for the periodic polarizability of the
medium on reciprocal lattice vectors 0, h, –h. Along
with the regions having the aforementioned lattice, the
half-space may also contain regions with other param-
eters; i.e., in the general case, the parameters χ0, χh,
and χ–h are coordinate-dependent.

The coordinate dependence is determined by not
only the lattice strain but also other changes in both
the structure and electron density. In particular, the
parameters χh and χ–h (in amorphous regions) or all
parameters (in the regions where material is absent)
can be zero. Strains are described by the displacement
vector u of atoms from the ideally periodic state.
As a result of the atomic displacements the parame-
ter χh is multiplied by a factor exp(–ihu) and the
parameter χ–h is multiplied by a complex conjugate
factor. These factors are also coordinate-dependent.
In the general case not only phase but also the modu-
lus of complex parameters may change.

Hence, it is reasonable to write the initial TTE in
a simpler form than in [20], without indicating the
specific type of the coordinate dependence, specifi-
cally,

(1)

where X0, Xh, X–h, and A are new complex parameters,
which are obtained after multiplying the parameters
χ0, χh, χ–h, and α by the factor iKp/4. Hereinafter, K =
2π/λ (λ is the X-ray wavelength). The derivatives in (1)
are written with respect to coordinates, which are
counted over directions of the vectors k0 and kh, as
shown in Fig. 1. The parameter p in these equations
cancels out and does not affect the result. It acquires
sense only when the algorithm of approximate calcu-
lation of derivatives is used.

Calculations are performed on an oblique coordi-
nate system of computational grid points, shown in
Fig. 1. The key parameter is the step along the Z axis.
It is chosen by the user as dz = d. The step along the
X axis cannot be arbitrary; it is dx = 2d , where
θB is the Bragg angle, equal to half of the angle
between the vectors k0 and kh. At each step along the Z
axis the grid points along the X axis are displaced by
half step. The values of the functions are set and deter-
mined at the points of intersection of lines along the
wave vector directions. At each step along the Z axis all
values on the X axis of the previous row are known.

2 2
0/hk k

−
∂ = +
∂

∂ = − +
∂

0
0 0

0

0 0

,
2

[ ] ,
2

h h

h
h h

h

Ep X E X E
s

Ep X A E X E
s

θBtan
CR
At the very beginning they are known from the bound-
ary conditions.

Let us consider three grid points with numbers 1, 2,
and 3 in the right bottom corner of Fig. 1. At each step
of Eq. (1) a relationship is installed between the known
fields E(old) = (  , , , ) at points 1 and 2
and the unknown fields E(new) = ( , ) at point 3.
Both Eqs. (1) are written for points in the middle of
segments between the pair of points 1 and 3 and the
pair of points 2 and 3. The derivative is replaced with
the ratio of the difference in fields in each pair of
points to the distance between points, which is equal
to p = d/ , and the values of functions on the
right-hand side of the equations is replaced by the
half-sum of values at the same points.

After these replacements Eqs. (1) can approxi-
mately be written as

(2)

Hereinafter, X1 = X0 – A. The superscripts indicate the
point at which the values of functions must be taken.
Equation (2) implicitly determines the unknown val-
ues in terms of the known ones. It is convenient to
write the solution to this system of equations in the
matrix form: E(new) = M2,4 × E(old). The matrix can be
written as

(3)

where
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Inside a homogeneous or slowly varying medium
the change in the diffraction parameters at all three
points can be neglected, as was done in the previous
studies. However, the differences can be rather large
at the interface between media, especially on the crys-
tal boundary. Note that the matrix has a certain sym-
metry. Some factors are repeated both over vertical
and over horizontal.

Numerical solution of the problem is reduced to
successive consideration of all triangles along the
X axis. Starting with the first line, where boundary
conditions are set at Nx + Nz +1 points, we obtain the
next line with a number of points smaller by unity.
After Nz steps the number of points with a known
solution is Nx + 1. It is reasonable to write the answer
in a rectangle with the numbers of points (Nx + 1)
along the X axis and (Nz + 1) along the Z axis with
omitted odd numbers of points, whereas the number Nx
and Nz must be taken even. This convergence scheme
suggests that the values of the wave function beyond
the considered segment are unknown at z = 0.
Therefore, a reliable answer cannot be obtained at
z = dNz beyond the interval of width dxNx.

The divergence scheme assumes as known that,
at z = 0, the wave function is zero beyond the consid-
ered segment. For this reason the calculation is per-
formed exactly in the same way, but with addition of
one point with zero values on the left and one point
with zero values on the right at each step along the
Z axis on the X axis. Thus, the number of initial points
increases by two, and the number of final points
increases by one. Correspondingly, the interval of
width dxNx at z = 0 turns into the interval dx(Nx + Nz)
at z = dNz . If a calculation in this version is performed
within the convergence scheme, one must add 2Nz
zeros to the input data and perform further calculation
with the same result.

The calculation for an amorphous medium can be
performed according to the same scheme as for a crys-
tal, only with zero values of the parameters Xh, X–h,
and A. In this case the matrix takes a very simple form:
only the first element in the first row and the last ele-
ment in the second row of this matrix are nonzero.
However, in this case the solution can be obtained
more easily directly from Eq. (2) in the form

(5)

The corresponding relations for a void are the same
with the only difference: the parameters X0± are equal
to unity. The calculation for these regions can be per-
formed much more rapidly than for the crystal. Note
that a matrix for these regions was reported in [20], but
multiplication of a complex matrix by a complex vec-
tor at many points increases the calculation time and
is unreasonable.

The most general way to set the shape of a crystal,
as well as that of an amorphous region, is as follows.

+ − + −= =(3) (1) (3) (1) (3) (2) (3) (2)
0 0 0 0 0 0( / ) , ( / ) .h hE X X E E X X E
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The limits x1(z) and x2(z), between which a crystal or
an amorphous region is located on the X axis, are
determined at each z value. If the limits coincide for
some coordinate z, the region is absent for such coor-
dinates. In this way one can determine any set of crys-
tals of arbitrary shape. Moreover, this approach short-
ens the program operation time due to the simpler way
of determining the medium for calculating the transi-
tion matrix. If the medium does not change, it is not
necessary to recalculate the matrix.

RESULTS AND DISCUSSION
The computer program for numerical simulation of

diffraction in crystals of arbitrary shape was developed
within the more general program XRWP1 [21],
designed to solve all (when possible) problems of
coherent X-ray optics, and constitutes its part. The
description of the program operation can be found on
the aforementioned website. In this section two exam-
ples of its application for calculating the diffraction in
a rectangular crystal are considered. The relatively
simple crystal shape makes it possible to compare the
calculated dependences with the previous solutions
obtained in a different way. However, this method
gives more information even during calculation,
showing a detailed distribution of radiation intensity
throughout the entire volume.

In both cases a silicon crystal and the 220 reflection
are considered; the photon energy is E = 10 keV and
the Bragg angle is θB = 18.84°. The radiation incident
on the crystal is a plane wave limited by a slit of size S
in the direction perpendicular to the vector k0. The
step d of the grid of points along the Z axis was taken to
be 0.04 μm for numerical calculations. The diffraction
parameters were obtained using the on-line-program
[22]. The crystal faces are parallel to the X (width) and
Z (length) axes.

First case. A crystal has sizes Wc = 50 μm in width
and Lc = 120 μm in length. The incident beam is fairly
narrow (S = 0.4 μm), and its center is located at the
point x = 0. Under these conditions, the width of the
Borrmann fan base is WB = 2Ltan(θB) = 82 μm; i.e.,
it exceeds the crystal width. The crystal is in the exact
Bragg position; i.e., the angular deviation Δθ = 0.
Note that the parameter α = –2sin(2θB)Δθ. The diver-
gence scheme was used in the calculation. The calcu-
lation results are presented in Fig. 2. Since the dif-
fracted radiation has a very low intensity for a narrow
beam at the input, it is convenient to show the contrast
on the logarithmic scale.

Figure 2 shows the distribution of the natural loga-
rithm of relative intensity for the transmitted beam
(ln(IT/I0)) on the left and the corresponding distribu-
tion for the reflected beam (ln(IR/I0)) on the right. On
the input surface, IT = I0 inside the slit. To obtain the
maximum contrast, the color scale shows the interval
from the minimum value Imi/I0 to the maximum value
3
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Fig. 2. Distribution of the natural logarithm of relative intensity for the transmitted beam ln(IT/I0) (on the left) and for the
reflected beam ln(IR/I0) (on the right) inside the Borrmann fan. A narrow beam is incident on the crystal end face. A version of
section topogram in the Laue geometry. The silicon crystal sizes are 50 μm along the X axis and 120 μm along the Z axis, reflection
220, photon energy E = 10 keV.
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Ima/I0; Imi = MIma. All values smaller than Imi were
replaced with Imi. The factor M was chosen empirically
to obtain the best contrast. This must be done,
because ln(0) = –∞. If a too small M value is chosen,
the contrast of maximum values will be very weak;
in the case of too large M, the contrast of small values
will disappear. The color scale above the image shows
the ln(In/I0) values, where n = T, R.

Note that at small z values the image in reflected
beam shows the well-known symmetric Kato interfer-
ence fringes [5] of section topography, and the crystal
boundary manifests itself in no way. Beginning with
z = 73 μm, the intensity on the right side of Fig. 2 is
limited by the crystal width, and on the left it becomes
constant along the lines parallel to the vector kh. The
pattern for the transmitted beam is asymmetric, and
limitation by the crystal width occurs on the left.

The incident narrow beam remains fairly intense
throughout the entire crystal length, with intensity sig-
nificantly exceeding the diffracted radiation intensity.
One can draw the following conclusion: the diffraction
of a narrow beam is not quite dynamic, because the
diffracted wave weakly affects the incident wave
(despite the fact that interference occurs). In the case
of diffraction of a wide beam the pattern is radically
different. This fact has been discussed poorly,
although it is clearly demonstrated in the analytical
theory. The maximum relative reflection IR/I0 is
CR
reached very rapidly (i.e., at small z values); it is about
0.01.

Second case. The crystal has a width Wc = 30 μm
and a length Lc = 250 μm. The incident beam has a rel-
atively large width (S = 100 μm), and its center is
shifted to the left by –64.2 μm. As a result, the inci-
dent beam illuminates only the left lateral surface of
the crystal, and this situation corresponds to the Bragg
diffraction. It is known from the analytical theory for
plane waves that total external reflection occurs in this
case under the condition |α – 2Re(χ0)| < |Re(χh)|.
Therefore, the angular deviation was chosen from
the condition α = 2Re(χ0); specifically, Δθ = 16.088 ×
10–6 μrad.

The convergence scheme was chosen so as to
obtain the final result not only on the crystal end face
but also in the region formed during the wave reflec-
tion from a crystal lateral face. A crystal of length L
can reflect a beam by the width W = Ltan(θB). At L =
250 μm we have W = 85.3 μm. For this reason the size
2W + Wc = 200.6 μm is shown. The logarithmic scale
(i.e., the value ln(In/I0), where n = T, R) was used
again to show the weak wave field inside the crystal.

The calculation results are presented in Fig. 3. The
transmitted-beam intensity map demonstrates that the
width of the incident beam exceeds the value neces-
sary for illuminating the entire crystal lateral face. The
left part of the beam just passes through the computa-
YSTALLOGRAPHY REPORTS  Vol. 68  No. 2  2023



COMPUTER SIMULATION OF THE EFFECT OF COHERENT DYNAMICAL DIFFRACTION 215

Fig. 3. Distribution of the natural logarithm of relative intensity for the transmitted beam ln(IT/I0) (on the left) and for the
ref lected beam ln(IR/I0) (on the right). A wide beam is incident on a crystal lateral face. Total external ref lection in the
Bragg geometry. The silicon crystal sizes are 30 μm along the X axis and 250 μm along the Z axis, ref lection 220, photon
energy E = 10 keV.
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tional box without any changes, whereas the part of
the beam that enters the crystal differently changes in
it at small and large z values. The incident beam
reaches the right crystal boundary at z = 88 μm. Up to
this point the crystal ref lects as a thick one, after which
the presence of its right boundary corrects the nature
of changes in the relative intensity.

These changes are most pronounced in the
reflected beam. Correspondingly, the reflected beam
in vacuum changes on a double distance of 176 μm.
Note the following two features, which are insuffi-
ciently clearly presented on the logarithmic scale. The
first is that the total reflection occurs not immediately.
At very small z values the reflection is weak, and it
increases gradually. In other words, the total ref lection
occurs with a delay. This situation can be compared
with the Goos–Hänchen effect, which was discussed
for neutrons in [23]; however, it occurs for radiation of
any nature upon reflection. In addition, the transition
to total reflection is accompanied by oscillations, and
the relative intensity of reflected beam in maxima may
even exceed unity.

The second feature is that at the same place the
transmitted beam penetrates the crystal to a very large
depth. In the version considered above it emerges from
the crystal with only half intensity lost (partially
because of the absorption). The main calculation
result in this case is the distribution of relative intensity
in the output plane, i.e., on the X axis at the maximum
value of the z coordinate. This distribution for the
CRYSTALLOGRAPHY REPORTS  Vol. 68  No. 2  202
reflected beam is shown in more detail in Fig. 4. The
behavior of the curve changes at x = x0 = –40 μm. This
point corresponds to the emergence from the crystal
for the ray reflected for the first time from its right
edge simultaneously with the ray reflected from the
left edge.

Note that the analytical formula for this curve was
published for the first time as long ago as in 1971 [17].
In the designations of this paper, in the initial stage,
when the right crystal boundary does not affect the
result, it has the form

(6)

where

(7)

Hereinafter, Jn(z) is a Bessel function of the nth order.
The result of the calculation based on this formula

is in complete agreement with the curve in Fig. 4, if the
coordinate is counted from the left edge, correspond-
ing to the crystal illumination onset. Coincidence
occurs at x < x0 = 60.3 μm. After this point, as was
shown in [17], the function G0(x) should be supple-
mented with the following additional function:
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Fig. 4. Detailed distribution of the relative intensity for the ref lected beam, presented on the top horizontal line in Fig. 3
(on the right). 
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Fig. 5. Detailed distribution of relative intensity for the transmitted beam, presented on the top horizontal line in Fig. 3
(on the left).
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By definition this function is zero at imaginary val-
ues of the parameter η, i.e., at x < x0. The coordinate x0,
as was noted above, corresponds to the position of the
ray reflected for the first time from right crystal face.

The distribution for the transmitted beam is shown
in more detail in Fig. 5. Here, we are interested in only
the narrow peak on the right side of the curve. This is
the part of the beam right edge that was very weakly
reflected by the crystal. It shows how a very narrow
beam is reflected. The total reflection effect is absent
for it. The diffracted radiation intensity is as weak as in
the case of Laue diffraction. The calculation scheme
under consideration may well contain parts of the
beam that change in no way when passing by crystal-
line regions. This is also specially demonstrated in the
plot. Here, an interesting detail is that the left and right
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CR
edges are limited by the slit and crystal, respectively.
One can see how rapidly (but not instantaneously) the
radiation disappears in the crystal under total reflec-
tion conditions.

CONCLUSIONS

The new scheme for numerical simulation of the
effect of coherent dynamic diffraction of synchrotron
radiation in crystals of arbitrary shape and structure
proved its efficiency. In this scheme the boundary
conditions for solving the Takagi–Taupin equations
are not linked to the crystal boundaries. The latter are
determined in terms of functions of coordinate z. This
scheme makes it possible to solve many various prob-
lems concerning the simulation of diffraction in crys-
tals of complex shape.

The results of numerical solution of the equations
within the same scheme are presented for two exam-
ples: the diffraction of a narrow beam in the Laue
geometry and the diffraction of a wide beam in the
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Bragg geometry. The calculation results completely
coincide with the previous analytical solutions, but the
results of numerical solutions are more informative:
they yield, in particular, a detailed intensity distribu-
tion through the entire crystal volume.

FUNDING

This study was supported by the Russian Foundation for
Basic Research, project no. 19-29-12043mk, in the part of
developing the computer program, and by the Ministry of
Science and Higher Education of the Russian Federation
(grant no. 075-15-2021-1362) in the part of the computer
experiment.

CONFLICT OF INTEREST

The author declares that he has no conflicts of interest.

REFERENCES
1. A. Authier, Dynamical Theory of X-ray Diffraction (Ox-

ford Univ. Press, 2005).
2. Z. G. Pinsker, Dynamic Scattering of X-rays in Crystals

(Springer, 1978).
3. B. K. Vainshtein, V. M. Fridkin, V. L. Indenbom, et al.,

Modern Crystallography, in 4 vols. (Nauka, Moscow,
1979).

4. N. Kato and A. R. Lang, Acta Crystallogr. 12, 787
(1959). 
https://doi.org/10.1107/S0365110X61001625

5. N. Kato, Acta Crystallogr. 14, 627 (1961). 
https://doi.org/10.1107/S0365110X61001947

6. S. Takagi, Acta Crystallogr. 15, 1611 (1962). 
https://doi.org/10.1107/S0365110X62003473

7. D. Taupin, Acta Crystallogr. 23, 25 (1967). 
https://doi.org/10.1107/S0365110X67002063

8. J. Gronkowski, Phys. Rep. 206, 1 (1991). 
https://doi.org/10.1016/0370-1573(91)90086-2

9. E. V. Suvorov and I. A. Smirnova, Phys.-Uspekhi 58,
833 (2015). 
https://doi.org/10.3367/UFNe.0185.201509a.0897

10. I. L. Shul’pina, E. V. Suvorov, I. A. Smirnova, et al.,
Tech. Phys. 92, 1450 (2022).

11. V. G. Kohn and I. A. Smirnova, Acta Crystallogr. A 76,
421 (2020). 
https://doi.org/10.1107/S2053273320003794

12. V. G. Kohn and I. A. Smirnova, Crystallogr. Rep. 65,
515 (2020). 
https://doi.org/10.1134/S1063774520040124

13. A. Authier, C. Malgrange, and M. Tournarie, Acta
Crystallogr. A 24, 126 (1968). 
https://doi.org/10.1107/S0567739468000161

14. A. G. Shabalin, O. M. Yefanov, V. L. Nosik, et al.,
Phys. Rev. B 96, 064111 (2017). 
https://doi.org/10.1103/PhysRevB.96.064111

15. V. Punegov and S. Kolosov, J. Appl. Crystallogr. 55,
320 (2022). 
https://doi.org/10.1107/S1600576722001686

16. M. Carlsen and H. Simons, Acta Crystallogr. A 78, 395
(2022). 
https://doi.org/10.1107/S2053273322004934

17. A. M. Afanas’ev and V. G. Kohn, Acta Crystallogr. A
27, 491 (1971). 
https://doi.org/10.1107/S0567739471000962

18. V. G. Kohn and T. S. Argunova, Phys. Status Solidi B
259, 2100651 (2022). 
https://doi.org/10.1002/pssb.202100651

19. V. G. Kohn and I. A. Smirnova, Phys. Status Solidi B
257, 1900441 (2020). 
https://doi.org/10.1002/pssb.201900441

20. V. G. Kohn and I. A. Smirnova, Crystallogr. Rep. 65,
508 (2020). 
https://doi.org/10.1134/S1063774520040112

21. V. G. Kohn. http://xray-optics.ucoz.ru/XR/xrwp.htm
22. V. G. Kohn. http://kohnvict.ucoz.ru/jsp/3-difpar.htm
23. V. A. Bushuev and A. I. Frank, Phys.-Uspekhi 61, 952

(2018). 
https://doi.org/10.3367/UFNe.2017.11.038235

Translated by Yu. Sin’kov
CRYSTALLOGRAPHY REPORTS  Vol. 68  No. 2  2023


	INTRODUCTION
	METHOD OF NUMERICAL SOLUTION OF TTE
	RESULTS AND DISCUSSION
	CONCLUSIONS
	REFERENCES

