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The third generation synchrotron radiation (SR) sources provide a powerful tool for 
studying microstructures by means of in-line phase contrast imaging [1]. This technique allows 
immediate and fast visualization of any electron density variation inside the material. A 
thickness variation of a few microns, for instance associated with a pore within the material, 
involves a very small variation of absorption, but can be associated with a phase shift sufficient 
for detection. The real size of a micro-pore correlates with the image size only on a very short 
distance behind the sample. For that, the near-field condition has to be fulfilled; namely, 
2r1 << D, where r1 = (λ z)1/2 is the radius of the first Fresnel zone for the wavelength λ and D is 
the transverse pore size. Towards the far-field region, where 2r1 >> D, the fringe pattern 
arises, and the object size is visible only in the modulation of the fringes. 

Quantitative information from image data can be obtained by solving the inverse 
problem. The goal is the phase of the transmission function of the object, which is proportional 
to the total electron density along the beam path. It can be determined, for example, using 
computer simulations. In the pioneer work by Snigirev et al. [1], the first variant of the theory 
of phase-contrast imaging was also presented. Later, many papers and review articles 
described the theory, for example [2, 3]. 

It follows from the theory that the properties of the image depend on the effective 
distance Z = z0z1/zt, where z0 is the distance from the sample to the SR source, z1 is the distance 
from the sample to the detector, and zt = z0 + z1. In a standard SR phase-contrast imaging 
setup (Fig.1,a) the following relation is fulfilled: z0 >> z1. Therefore, Z is very close to z1. In such 
a scheme, the projection of the source size is much smaller than the source size itself, which 
allows the use of the source with relatively large size. A small value of Z is achieved using a 
small value of z1. 

However, there is another possibility to obtain a small value of Z and implement the near-
field regime. We can realize the inverse relationship z0 << z1. This case is shown in Fig. 1,b. In 
such a case, the experimental image corresponds to the near-field condition, but the image 
size will be much larger than the object size. At the same time, the projection of the source 
size also increases, as shown in the figure. The high resolution can be attained only when the 
transverse source size is smaller than the object size. 

A secondary source is required to implement such a scheme with SR source, which, for 
example, can be created utilizing a compound refractive lens (CRL), first proposed by Snigirev 
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et al. [4]. Figure 1,c presents an outline of the setup based on such a scheme. Analytical theory 
of imaging and focusing by CRL was first developed by Kohn [5–7]. 

We performed the computer simulations choosing a cylindrical micropipe (MP) with a 
diameter of 2 µm as a model object. MP was located in a SiC crystal. We show the images of 
the MP calculated at different distances. The intensity ratio at the detector to the intensity in 
front of the CRL is discussed. The properties of the image recorded using such a scheme are 
analysed and compared to those of the image recorded using the standard set up. Finally, we 
show that one can achieve stronger coherence by focusing the beam by the CRL. 
Consequently, one can implement the secondary-source setup in light sources with a relatively 
large angular size. 

Fig. 1. Experimental schemes considered in this communication. See text for details. 
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