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Abstract—The features of the Bragg diffraction of coherent synchrotron radiation from the atomic lattice of a
single crystal in the Laue geometry have been studied theoretically, provided that the radiation beam is lim-
ited by a relatively large slit placed in front of the crystal. The method of numerical simulation is used, and
dependences of the intensity distribution are obtained for different crystal thicknesses. It is shown that the slit
edges introduce inhomogeneous intensity distortions inside the Borrmann fan with an angle of 2θB, where
θB is the Bragg angle. In the area where the triangles intersect the intensity distribution is similar to that for
the diffraction from a slit in air at a certain (large) distance. An equation for the correspondence between the
distance and crystal thickness is derived, which describes well the numerical calculation results.
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INTRODUCTION
The diffraction of a limited beam of visible light

was observed by even primeval people, when sunlight
entered a cave through a hole in a pile of stones.
At short distances the light propagates in a straight
line, and the beam takes the transverse shape of the
hole. Later the light propagation theory was devel-
oped, known as geometric optics. However, this the-
ory becomes invalid with a decrease in the slit size, and
wave properties of light begin to manifest themselves.
Currently it is generally accepted to select three ranges
of distance, in which light beam transformation with
an increase in distance z after a slit of width d occurs in
radically different ways [1].

At short distances (near field) the geometric optics
is approximately valid. At long distances (far field),
when a plane wave is incident on a slit, the transverse
beam size is approximately equal to λz/d and increases
proportionally to the distance (λ is the monochro-
matic light wavelength). In this case the slit is a kind of
a secondary source with a limited angular divergence
α = λ/d. There is also a transition region, referred to as
the Fresnel diffraction region with a center at the dis-
tance zd = d2/2λ, where the increase in the beam size
due to the angular divergence αz is half of slit width d.

For synchrotron radiation (SR) with a photon
energy E in the range from 5 to 50 keV, the situation is
similar to that for visible light with the only difference:
at reasonable distances the slit size should be much
smaller than for visible light, and the beam should be
coherent on the slit width, which is not easy to imple-

ment in laboratory X-ray sources. For example, zd =
25 m at d = 50 μm and λ = 0.05 nm (E = 25 keV).
In other words, for relatively large slits the wave prop-
erties of radiation manifest themselves at very long dis-
tances. Nevertheless, the wave properties of third-gen-
eration SR sources have been experimentally observed
at diffraction from slits with sizes from 10 to 100 μm
and used to measure the degree of SR coherence [2–4].

Divergent beams from two very narrow slits,
located close to each other, overlap and form a simple
interference pattern: an array of bright and dark
fringes. In the visible light region this experiment was
performed for the first time by Thomas Young in the
beginning of the XIX century; the first such experi-
ment with coherent SR was carried out in 2001 [5].

The fact that the interference of hard SR during its
propagation in air is observed at relatively long dis-
tances is a certain inconvenience for experiments.
At the same time, SR undergoes diffraction in single
crystals, the lattice period of which only slightly
exceeds the SR wavelength. Initially (in the first half of
the XX century), the theory of SR diffraction in single
crystals was developed for plane waves and crystals
with planar input and output surfaces. Then, in 1961,
the theory for a spherical wave was constructed using
the Fourier transform. Later on, a theory was devel-
oped for the general case based on the solution of
Takagi equations [6, 7].

A specific feature of two-wave X-ray diffraction of
a spherical wave from a lattice is that the radiation
from a secondary source (for example, a narrow slit) is
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distributed within a Borrmann fan (we will call it tri-
angle) having an angle 2θB, where θB is the Bragg
angle, found from the condition 2a = nλ. Here,
a is the interplanar spacing for the system of planes on
which diffraction occurs and n is an integer (reflection
order). The Bragg angle is relatively large for typical
values of diffraction parameters: it may be 10° or even
larger.

For this reason, two beams from small secondary
sources overlap very rapidly and can form an interfer-
ence pattern in a crystal not worse than when propa-
gating in air. This fact was used when developing the
theory of two-slit interferometer for the reflected
beam in the case of diffraction in a single crystal.
The calculation was performed using the influence
function (propagator) of the crystal for the Takagi
equations. The main result was the equation for the
period of interference fringes [8].

It was shown later that an interference pattern of
the same type can be obtained with one slit and two
crystals separated by a thin air layer [9], as well as using
a bilens interferometer [10] based on a compound
refractive lens [11]. In this case, the interference fringe
period is the same. It was shown in those studies that
the operation of a crystal under conditions of diffrac-
tion from the lattice and in reflected beam is similar to
that of air. The role of the distance after the scattering
object is played by the crystalline plate thickness.
In other words, an interference pattern can be
obtained almost at a zero distance.

Coherent diffraction from a slit of finite sizes under
conditions of diffraction from the atomic lattice in
a single crystal was studied theoretically more than
50 years ago, both solving the Takagi equations [12]
and using a propagator crystal [13, 14]. The solutions
were formal, and the analogy with the diffraction from
a slit in air was not analyzed in detail; in other words,
it was only demonstrated that the problem has a solu-
tion. Experiments for such a system have not been per-
formed until now for the following reasons. On the one
hand, there are no coherent beams of necessary size.
On the other hand, it is difficult to state an experiment
without understanding properly its purpose and moti-
vation. It is of interest that a method of numerical cal-
culation of the Takagi equations was formulated for
the first time in [12]; then this method was widely
applied in numerous publications devoted to the anal-
ysis of images of various lattice defects. Recently this
method was further developed to adopt it for crystals
of arbitrary shape [15].

The main result of this study is a detailed analysis of
the analogy between two media—air and crystal lattice
(case of diffraction from a lattice in reflected beam)—
for the relatively simple case of plane-wave diffraction
from a slit of finite sizes. This analogy is of great prac-
tical importance, because many interference effects
that are relatively difficult to observe when detecting in

θBsin
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air can be used under plane-wave diffraction condi-
tions in a crystal in reflected beam.

Nevertheless, the two aforementioned media do
not coincide completely. The most significant differ-
ences between them are as follows. First, in the case of
diffraction in a crystal, there arise two fields with dif-
ferent refractive indices, which leads to small extinc-
tion oscillations of intensity. We will not be interesting
in this effect. It is absent in the case of diffraction from
a slit in air, and is not interesting in a crystal in the case
under consideration. The second difference leads to
the fact that we will be interested in only the Fresnel
diffraction region. The near-field region is trivial
(although different), whereas in the far-field zone the
crystal differs from air by absorption of radiation.
Here, the key role is played by the Borrmann effect [6,
7], due to which radiation remains only in the region
where the absorption is minimal.

All numerical calculations were performed using
the XRWP program [16], developed by one of the
authors to solve a wide circle of problems of X-ray
optics, both with crystals and without them. The pro-
gram is freely distributed on the Internet and has
a detailed description for self-learning to work with it.
All one has to do is correctly understand the problem
conditions and be able to understand the calculation
results.

STATEMENT OF THE PROBLEM 
AND METHOD FOR ITS SOLUTION

The possible experimental scheme considered in
this study is partially presented in Fig. 1. The radiation
from an SR source with small transverse sizes, located
at a fairly long distance (is not shown), passes through
monochromator (1), which does not change the spa-
tial properties of the SR beam. Then it is limited by
slit (2), after which crystal (3) is installed in the posi-
tion of diffraction reflection. A symmetric case of
Laue diffraction is assumed to take place. The surfaces
of the crystalline plate make an angle θB with the
direction of the SR beam incident on the slit.
Detector (4) records the reflected radiation.

In the case of diffraction from a slit in air, a crystal
is absent, and the detector records the beam transmit-
ted through the slit at a relative long distance from the
slit. It is assumed that the monochromator selects
a fairly narrow line in the SR spectrum, and consider-
ation of this spectrum does not change the calculation
results for monochromatic radiation. However, this is
not always true, because crystals are characterized by
a fairly high sensitivity of SR diffraction to a change in
the radiation wavelength. Nevertheless, it makes sense
to take into account the spectrum when carrying out a
detailed comparison of the calculation and experi-
mental results.

Formally, high monochromaticity can be achieved
using higher reflection orders in the monochromator
YSTALLOGRAPHY REPORTS  Vol. 69  No. 3  2024
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Fig. 1. Part of the experimental scheme (without a source):
(1) monochromator, (2) slit, (3) single crystal, and
(4) detector.
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as compared with the sample crystal. A record was the
monochromatization based on diffraction in crystals
to a spectral width of 5 × 10–7 keV, obtained at energy
of 14.4 keV of the Mössbauer nuclear transition of the
Fe57 isotope [17]. Monochromatization at the same
level can be achieved for any photon energy.

The solution to the Maxwell equations for SR
propagation in air in the paraxial approximation has
the form of a convolution of the SR wave function with
a Fresnel propagator. The convolution can be most
rapidly and easily calculated by the method of double
Fourier transform with application of the fast Fourier
transform [18]. In the case under consideration dif-
fraction occurs in the (x, z) plane, and the result is
independent of the coordinate y. The z axis coincides
with the beam propagation direction, and the x axis is
perpendicular to the z axis.

The calculation was performed in three steps. First
the Fourier transform of the wave function after the
slit was calculated. Then the result was multiplied by
the Fresnel propagator’s Fourier transform (PFT):

(1)
where z = z2 – z1, z1,2 are the initial and final distances
in empty space. In our case z1 = 0. Then the inverse
Fourier transform was calculated.

The diffraction in crystal was calculated according
to the same scheme, only the Fresnel PFT was
replaced with the solution to the diffraction problem
for plane waves at an arbitrary deviation of the wave
vector direction from the exact direction, satisfying
the Bragg condition. This solution was obtained even
in the beginning of the XX century; it is described in
detail in textbooks [6, 7]. As was shown in [9, 10], it is
reasonable to consider at once the (2 × 2) matrix,
because the wave function in a crystal has two compo-
nents (for transmitted and reflected beams).

In this study we will consider only the transition
from incident to reflected beam. Correspondingly, the
PFT of the crystal for this process has the form

(2)

where

(3)

(4)

(5)
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Bragg position; and K = 2π/λ is the wave number.
The function F(q) is introduced to shift the origin of
coordinates to the midpoint of the Borrmann triangle
base. The equations are given for the axis oriented per-
pendicular to the reflected beam direction. For conve-
nience of further presentation, we assume that
Re(X) > 0.

The crystal propagator is calculated through the
inverse Fourier transform of the function Pс(q, tc) (2).
It has an analytical form, being expressed in terms of a
zero-order Bessel function [19, 20]. However, for the
purposes stated, it is more convenient to analyze the
analogy between the Fresnel and crystal PFTs. The
calculation procedure is the same in both cases, the
only distinction is the difference between Eqs. (1) and
(2)–(5). Equation (1) contains an exponential, the
argument of which is proportional to q2. In Eqs. (2)–
(5) this argument is also present (being symmetric at
q0 = 0) but in a limited range of q values, when |αq| <
Re(X). If a plane wave is incident on a slit, q = 0 before
the slit. After the slit a narrow range of integration over
q arises in the integral; the wider the slit, the smaller
this region is. In other words, small q values have pri-
ority for a wide slit.

It is of interest to compare the factors before q2 in
the argument of the exponentials in order to determine
which parameter in the crystal PFT is analogous to the
distance in the Fresnel PFT. A calculation shows that
the role of distance in the crystal is played by the
parameter

(6)

This equation is obtained from comparison of the fac-
tor at q2 in the argument of the exponential in (1) and
the factor at q2 in the expansion of parameter G in (4)
in a power-law series in q2 at q0 = 0. There is still a cer-
tain difference between the media, because the propa-
gator in the crystal has two exponentials rather than
one, as in air. Correspondingly, for a plane wave
(a very wide slit) the squared modulus of the function
Pс(q, tc) (2) is proportional to the factor sin2(G), which
oscillates with an increase in thickness tc with a period
Λс = λ /Re(χ) .

= θ θ χ χ =2
B B2 sin cos /Re /( .),c cz t X K
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Fig. 2. Relative intensity of the SR beam at the slit center
in dependence of the distance to the detector (1) and the
contributions to this intensity from the cosine (2) and sine
(3) parts for d = 50 μm and photon energy of 25 keV.
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CALCULATION RESULTS 
AND THEIR ANALYSIS

The equations of the previous section were written
for a plane incident wave. It is known that, for a spher-
ical wave emitted by a point source located at a dis-
tance z0 from the slit, the result of calculating the
phase contrast [21] will be the same as for a plane wave
at the distance z = z0z1/zt, where zt = z0 + z1, z1 is the
distance from the slit to the detector; the only differ-
ence is that the pattern will have a width enlarged by
the factor zt/z0. It can be seen that, under the condition
z0 >> z1, the parameter z differs only slightly from z1.
The same situation occurs in the case of diffraction
from a slit in air, because the aforementioned equa-
tions correspond to geometric optics. For this reason it
is sufficient to perform a calculation for an incident
plane wave.

The diffraction in crystals will be analyzed based on
the calculation results for an incident plane wave, spe-
cifically, provided that z0 >> z1, where the distance z1
is calculated from the crystal thickness according to
formula (6). Practically the same case can be imple-
mented using a compound refractive lens [22].
The diffraction focusing effect [23], which has no ana-
logues in air, is implemented for a spherical wave in
a crystal. At some combination of parameters this
effect may spoil the analogy between crystal and air in
the case of diffraction from a relatively large slit.

The effect of diffraction of a plane light wave from
a slit is considered in detail in all textbooks on optics.
Nevertheless, the full-scale numerical simulation has
not been discussed until now, whereas it must be done
to perform a detailed comparison. The equations for
SR are similar to those for visible light. The depen-
dence of the SR wave function ψ(x,z) on x is found as
the integral of the Fresnel propagator P(x – x1, z) over
a finite range of the variable x1. This dependence is
symmetric, and the most interesting result is the inten-
CR
sity at the point x = 0 in the dependence on z. In this
case the SR wave function has the form

(7)

where C(r) and S(r) are the Fresnel cosine and sine
integrals, i.e., the integrals over the variable s from 0 to
r for the functions cos(πs2/2) and sin(πs2/2).

The relative intensity IR(0, z)/I0 is the sum of the
squares of C and S, multiplied by 2. At z = 0 it is unity;
with an increase in z it first oscillates with small step
and amplitude. Gradually the oscillation step
increases; the amplitude increases to maximum and
then monotonically tends to zero. The parameter zd is
referred to as the diffraction length; it corresponds to
the point of maximum for the contribution from the
Fresnel cosine integral; the maximum intensity is
obtained approximately at zm = 0.7zd.

The function IR(0, z)/I0 is presented in Fig. 2
(curve 1). Curves 2 and 3 show the contributions to
this function from the Fresnel cosine and sine inte-
grals. The calculation was performed for the slit width
d = 50 μm and photon energy 25 keV (λ = 0.0496 nm).
In this case zd = 25.2 m and zm = 17.6 m. Since the
integral intensity over x is independent of z, the
increase in the maximum is accompanied by compres-
sion of the SR beam. This fact is demonstrated in
Fig. 3, where the total dependence IR(x, z)/I0 in the
range of distances from 0 to 40 m is shown. One can
see in this figure that the beam begins to expand
almost immediately, i.e., at small distances from the
slit, but the intensity beyond the slit is very weak.

The near-field zone, where the beam changes
weakly (according to the geometric optics), has rela-
tively small sizes. Strong interference occurs in the
Fresnel diffraction region; it is caused by the slit edges,
where space homogeneity modes change sharply.
The most interesting is the effect of beam compression
with an increase in intensity at z = zm. The slit works as
a weakly focusing optical device. The computer calcu-
lation presented in Figs. 3–5, was performed using the
XRWP program. All calculation details can be found
on the program website [16], including theoretical
equations and examples of solving various problems.
The calculation was performed using a point grid with
a step of 0.1 μm and the number of points 215 = 32 768.
Figure 3 was plotted based on a 401 × 401 matrix, and
the calculation time was several seconds.

Figure 4 presents a similar intensity distribution but
for the case where directly after the slit the SR beam
enters a silicon single crystal installed in the exact
Bragg position for the 220 reflection. Therefore,
instead of the distance z over the vertical crystal axis,
the thickness tc is shown. The diffraction parameters
were calculated using the on-line program [24]. In this
case, θB = 7.42°, Re(χ) = 9.34 × 10–7, and Λс =
52.7 μm. Because of the extinction effect the pattern is
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Fig. 3. Dependence on x for the relative SR beam intensity
in the region of distances corresponding to the Fresnel dif-
fraction at d = 50 µm and photon energy of 25 keV. 
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Fig. 4. Dependence on x for the relative intensity of
reflected (220) SR beam at diffraction in a silicon single
crystal for the range of thicknesses corresponding to the
Fresnel diffraction at d = 50 µm and photon energy of
25 keV. 
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a set of fringes. However, tracing the intensity distri-
bution in the maxima of extinction beatings, one can
note some analogy with the diffraction from a slit in
air, which is shown in Fig. 3. The figure is based on
a matrix with a number of points 801 × 801. The cal-
culation time, correspondingly, increased to several
minutes.

The most complete correspondence between the
single crystal thickness tc and the distance in air z is
observed in the region of the main maximum. Accord-
ing to (6), for the given case, this correspondence is
determined by the formula tc = 2.82 × 10–5 z. For z =
17.6 m we obtain the value tc = 0.496 mm, which is in
complete correspondence with the calculation result.
The maximum tc value is, however, somewhat smaller
because of the SR absorption in the single crystal.
In the region of small thicknesses the analogy is
incomplete because, in the case of single crystal,
the changes related to the space homogeneity jump
at the slit edges propagate in the Borrmann triangle
with the angle 2θB. While these triangles do not inter-
sect, there is no interference, and the slit influence
manifests itself in no way. In the case considered above
they intersect specifically before the main maximum.

Figure 5 shows the calculation result for a slit with
a size d = 100 µm. The parameter zm is proportional to
d2; it increased by a factor of 4 in comparison with the
previous version. The single crystal thickness at which
Borrmann triangles intersect only doubled. Therefore,
CRYSTALLOGRAPHY REPORTS  Vol. 69  No. 3  202
one can observe not only the main maximum but also
several maxima preceding it in Fig. 3. Here, the pat-
tern is based on a 901 × 901 matrix. Note that the cen-
tral maximum does not correspond to the highest rel-
ative intensity, which is observed at smaller thick-
nesses. The reason is the same: SR absorption in the
crystal. The reduction of intensity caused by normal
absorption for tc = 2 mm is exp(–μ0tc) = 0.367. In fact,
the value in the maximum is somewhat larger, because
some part of radiation is absorbed weakly due to the
Borrmann effect.

For a slit with a size of 25 µm or smaller, vice versa,
even the main maximum does not fall in the overlap
region of Borrmann triangles with vertices at the slit
edges, and the beginning of the far-field zone and SR
beam expansion are observed immediately in the
interference region. In other words, the slit operates as
a secondary source, and the calculation results are
close to those obtained by Kato even in 1961 [25].

The calculation results for other photon energies
show distributions fairly close to those presented in
Figs. 4 and 5 but for other crystal thicknesses. The
point is that the proportionality factor between the
distance z and crystal thickness tc in formula (6)
depend weakly on energy, because  is propor-
tional to λ and Re(χ) is proportional to λ2. However,
the diffraction length, i.e., the distance corresponding
to the center of the Fresnel diffraction region, is

θBsin
4
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Fig. 5. Dependence on x for the relative intensity of
reflected (220) SR beam at diffraction in a silicon single
crystal for the range of thicknesses corresponding to the
Fresnel diffraction at d = 100 μm and photon energy of
25 keV. 
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inversely proportional to λ and decreases with
decreasing photon energy. The absorption in crystal,
vice versa, increases under these conditions. However,
its role is not very important because of the Borrmann
effect.

Until now, it was assumed that the crystal is
installed in the exact angular position for the diffrac-
CR

Fig. 6. Dependence on x for the relative intensity of
reflected (220) SR beam at diffraction in a 500-μm thick
silicon single crystal at d = 50 μm and photon energy of
25 keV; (1) exact angular position, (2, 3) crystal rotated
from the exact position by an angle of 5 × 10–7 rad to dif-
ferent sides. 
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tion from the lattice. Naturally, a question arises about
the accuracy with which this angular position must be
specified in order not to violate the correspondence
under consideration. An analytical answer to this
question has not yet been obtained, but the answer can
be found by numerical simulation. Figure 6 shows
three curves for a photon energy of 25 keV, silicon
crystal thickness of 500 μm, and (220) reflection.
Curve 1 corresponds to Fig. 4 for the aforementioned
thickness, and curves 2, 3 were obtained using crystal
rotation by an angle 5 × 10–7 rad relative to the exact
angle, satisfying the Bragg condition, to different
sides. The curves become asymmetric and are specu-
larly reflected with a change in the rotation angle sign.

As follows from the calculations, correct diffraction
occurs in a very narrow angular range, which decreases
with an increase in the photon energy. This high sen-
sitivity to the angular position of crystal is generally
characteristic of the Laue diffraction in relatively thick
crystals.
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