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Abstract—The features of focusing X rays using a refractive–diffractive lens (RDL), which is a system of two
asymmetrically reflecting crystals with asymmetry factors whose product is equal to unity, and a refractive
lens with a large focal length, are theoretically studied. Crystals make it possible to shorten the focal length of
the lens by b2 times, where b is the asymmetry factor of the second crystal. A detailed numerical simulation
of the effect of radiation focusing using the RDL has been performed. The universal computer program
XRWP was used, which was created to calculate the effects of coherent X-ray optics. Analytical formulas are
obtained for the optimal aperture and radius of curvature of the lens, as well as for the width of the radiation
spectrum that can be focused.
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INTRODUCTION
The X-ray refractive index in a substance differs

very little from unity. In addition, there are no trans-
parent materials for X rays. For this reason, attempts to
focus an X-ray beam using the refraction effect were
unsuccessful for hundred years after discovering
X rays. This problem was solved in 1996 using a com-
pound refractive lens (CRL) [1]. CRLs have been
widely used to focus narrow beams on third-genera-
tion synchrotron radiation (SR) sources, especially
after designing planar and parabolic lenses [2].
It turned out to be fortunate that the real part of X-ray
refractive index for all materials is smaller than unity,
i.e., nr = 1 – δ. In this case, a focusing lens should have
a concave rather than convex surface profile, due to
which absorption losses are significantly reduced.

For example, a biconcave beryllium lens with a curva-
ture radius R = 1 mm at the parabola apex focuses
a plane wave at a distance F1 = R/2δ = 448 m for the
photon energy E = 17.48 keV, corresponding to the Kα1
line in the spectrum of X-ray tube molybdenum
anode. The problem was solved using the on-line pro-
gram [3]. At an aperture A = 2 mm the length of this
lens is p = A2/4R = 1 mm, disregarding the bridge
thickness, which cannot be more than 1% of the lens
length. If 400 such lenses are put together, the focal
length will shorten by a factor of 400 to the value F400 =
1.12 m, which is quite acceptable for experiments even
in a medium-size laboratory, using a source with small
transverse sizes.

Since the total length of this CRL exceeds 40 cm,
the thin-lens approximation is inaccurate for it, and

a more complex theory [4] must be used. In addition,
due to the absorption on aperture edges, the beam will
in fact be focused on an effective aperture Ae of smaller
size. In this case, the calculation within the on-line-
program [3] gives the following result: F400 = 1.18 m
(counting from the middle of the CRL length) and
Ae = 0.473 mm. Despite the fact that the aperture is
reduced by a factor of 4, it is still fairly large. The beam
size in the focus for a point source is wf = 0.084 μm,
whereas the maximum relative intensity is Im/I0 = 5296.
Here, I0 is the radiation intensity before the CRL and
Im is the maximum intensity in the CRL focus.

Another way to reduce the focal length of a lens
consisting of one element was considered in [5]. It was
proposed to reflect asymmetrically the X-ray beam
from the atomic planes of silicon crystals installed
before the lens and after it. This lens, based on the
combined effect of refraction in the lens and diffrac-
tion in the crystals, was called a refractive–diffractive
lens (RDL). Crystals were cut in the form of plates so
as to provide a relatively large angle between the plate
surface and the atomic planes reflecting the beam.
The crystal orientation is such that the beam reflected
from the first crystal is expanded, i.e., its width is
divided by the coefficient b1 = 1/b. After the reflection
from the second crystal, the beam is compressed, i.e.,
its width is divided by the coefficient b2 = b.

The parameter b = sin(θ0)/sin(θh) >> 1 is equal to
the asymmetry factor for the second crystal, it greatly
exceeds unity. Here, bk (k = 1, 2) is the asymmetry
parameter for a specific crystal and θ0 and θh are the
459



460 KOHN

Fig. 1. Schematic of the experiment: (1) point source;
(2) slit limiting the beam; (3) first crystal, expanding the
beam, (4) lens focusing the beam, (5) second crystal, com-
pressing the beam, and (6) focus, i.e., the point where the
beam becomes a secondary source.
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angles between the crystal surface and the directions of
the incident and reflected beams, respectively.
The schematics of a possible experiment is illustrated
in Fig. 1, which shows the angles θ0 and θh, the point
source (1); the slit limiting the beam (2); the first crys-
tal, expanding the beam (3); the lens focusing the
beam (4); the second crystal, compressing the
beam (5); and the focus, i.e., the point at which the
beam becomes a secondary source (6). The distances
between objects 1 and 2, as well as between 5 and 6, are
much larger in a real experiment, they are reduced for
compactness in the figure. Other distances are small
and can be neglected in the calculation. In this scheme
the first crystal is used to reduce the distance from the
source to the lens, while the second crystal reduces the
lens focal length. The divergence of electromagnetic
radiation is known to be determined by its first Fresnel
zone, the diameter of which for a spherical wave is
2(λz)1/2, where λ = hc/E is the radiation wavelength,
h is Planck’s constant, c is the speed of light, and z is
the distance from the object to the observation point.
Therefore, when a beam is compressed by a factor of b,
the focal length is reduced by a factor of b2. This fact,
noted a year before [5], was published and used for
another purpose in [6].

With allowance for the aforementioned fact, having
chosen b = 20, one can obtain a focal length of 1.12 m
for one lens (indicated above) at reflection from the
second crystal; in this case, it is not necessary to put
together 400 lenses. This method appears attractive,
taking into account the high cost of refractive lenses
for focusing SR. The first crystal with inverse asym-
metry is also necessary to make the focus position in
the transverse plane independent of the radiation
wavelength. The first crystal in [6] reflected symmet-
rically, and the reflection by the second crystal was
used to separate different SR wavelengths in space.
CR
A numerical calculation of the parameters of RDL-
focused X-ray beam was performed in [5] based on the
analytical formulas for the radiation intensity in the
focus, which were derived using the crystal and lens
propagators directly in real space. These formulas are
relatively complicated; the calculations were per-
formed in only few points and with low accuracy.
Another approach to the numerical simulation of
X-ray optics effects is developed and implemented in
the universal computer program XRWP [7], which
uses the modular principle of wave optics. The essence
of this principle is that a change in the wave function
(WF) in the plane oriented perpendicular to the beam
direction is taken into account on a system points in
a specified computational grid. A change in WF is suc-
cessively recalculated when passing through each
object and each distance from one object to another.

Having a set of calculation modules for each object
and involving empty space in the calculation, one can
calculate any experimental scheme, including RDL.
When the calculation is reduced to convolution of two
functions, the Fourier transform from real to recipro-
cal space and vice versa is used. The calculation is per-
formed according to the fast Fourier transform (FFT)
algorithm [8], which sharply shortens the calculation
time. Another advantage of this method for solving
X-ray optics problems is that the FFT algorithm needs
a grid with many points and a small step, which makes
it possible to describe easily intensity oscillations with
an arbitrarily small period, generally occurring in
coherent optics.

The purpose of this study was to perform a numer-
ical simulation of the effect of RDL-aided SR focus-
ing within the XRWP program and analyze theoreti-
cally the drawbacks of this focusing technique, related
to the fact that the diffractive reflection of an SR beam
by a crystal is implemented in a very narrow angular
range. Analytical formulas are obtained for the opti-
mal values of the aperture and refractive-lens curva-
ture radius, as well as the width of the spectrum that
can be focused by RDL. This analysis was not per-
formed in [5]. At the same time, the calculation by the
new method, the results of which are on the whole
consistent with those obtained in [5], is performed
more thoroughly.

STATEMENT OF THE PROBLEM
AND METHOD FOR ITS SOLUTION

The main calculation formulas used in the XRWP
program were described in [9]. Two-wave diffraction
from the atomic lattice in a crystal is implemented in
the (x, z) plane, the z axis is chosen along the beam
direction, and the x axis is perpendicular to z.
We restrict ourselves to the consideration of a one-
dimensional lens, focusing radiation in the same
plane. Let F(x) be the WF of monochromatic radia-
tion with a specified photon energy E at some point on
the beam path, i.e., at a fixed value of coordinate z.
YSTALLOGRAPHY REPORTS  Vol. 69  No. 4  2024
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The WF transfer in empty space by some distance z =
z2 – z1, where  are the initial and final distances in
empty space, is calculated in the form of a convolution
F(x) with a Fresnel propagator, which is a mathemati-
cal analog of the Huygens–Fresnel principle.

The convolution is calculated in three stages.
The first stage implies calculation of the WF Fourier
transform F(q), where q is the coordinate in the recip-
rocal space, related to x. In the second stage, this func-
tion is multiplied by the Fourier transform of the Fres-
nel propagator

(1)
The inverse Fourier transform is calculated in the

third stage. This method was used in many author’s
publications. Its another advantage is the possibility of
obtaining rapidly a two-dimensional array in the (x, z)
plane for the SR intensity distribution in empty space.
If WF is known at some distance z1, it is not necessary
to recalculate the entire experimental scheme in order
to calculate the WF value at the distance z2. It is suffi-
cient to calculate only the convolution.

The WF transmission through a thin biconcave
focusing lens can be taken into account via multiplying
WF by the lens transmission function T(x) =
exp(‒iπx2/λF1), if |x| < A/2. An SR beam is generally
limited by a slit; in this case its width is equal to the
RDL aperture, and T(x) = 0 beyond the aforemen-
tioned range. The accuracy of this approach is quite
sufficient for a single lens. The XRWP program can
calculate CRLs by more complex methods [10], which
are applicable for an arbitrary number of lenses.

The asymmetric reflection by a single crystal is
taken into account by calculating the convolution with
the crystal propagator but in a more complex way.
Here, the Fourier transform of the crystal propagator
is a solution to the problem of plane wave diffraction
from an atomic lattice, which was thoroughly consid-
ered a long time ago in textbooks [11, 12]. The pro-
gram implements the most general case of asymmetric
reflection from a multilayer crystal, using recurrence
formulas. The recurrence formulas were derived in the
general form in [13]. In [14] the calculation formulas
for a multilayer crystal are presented in the most con-
venient form but only for the symmetric case. A gener-
alization to the asymmetric case was performed in [6].

Below we give the formulas for calculating radia-
tion in the reflected beam for a crystal of finite thick-
ness in the asymmetric case of diffraction:

(2)

(3)

Here, it is assumed that the beam WF F0(x) at a dis-
tance z1 from the crystal is known, and it is necessary
to find the WF at a distance z2 after the reflection from
the crystal. Correspondingly, the inverse Fourier

1,2z
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transform is calculated from the product of the WF
Fourier transform by the Fourier transform of the
Fresnel propagator for the distance z = z1 + z2b  and
by the Fourier transform of the crystal propagator
Pc(q – q0, bk). In this case, we have [14]

(4)

(5)

(6)

Here, t is the crystal thickness, K = 2π/λ, χh and χ–h
are the complex diffraction parameters, μ0 = Kχ0i is
the linear absorption coefficient, and χ0i is the imagi-
nary part of the complex parameter χ0.

At the same time, the crystal responds strongly to
a deviation from the Bragg condition, both when
rotated at some angle ϕ and when the photon energy
shifts (by ΔE) from the value corresponding to the
Bragg condition. In this case [6],

(7)

(8)
It follows from (3) that the Fourier integral is first cal-
culated on a standard grid of points. Then the point
grid spacing for the calculation result should be
divided by the parameter bk according to formula (2).
If bk > 1, the spacing is reduced. A shift of the crystal
angular position by ϕ and the photon energy shift ΔE
from their values corresponding to the Bragg condi-
tion lead both to a change in reflection and to the
occurrence of an additional phase factor, due to which
the reflected beam deviates from its direction. It fol-
lows from (8) that, at bk = 1, the reflected beam direc-
tion is independent of the photon energy shift. A sim-
ilar situation occurs in the case of reflection in two
crystals, when b1b2 = 1.

CALCULATION RESULTS 
AND THEIR ANALYSIS

Figure 2 presents the results of calculating the
X-ray intensity distribution in empty space after RDL
focusing, which was described above and considered
in [5]. The results were obtained for the following
parameters: beryllium lens with R = 1 mm; A = 2 mm;
silicon crystals; and asymmetric reflection 220 with
asymmetry factors bk, equal to 1/b for the first crystal
and b = 20 for the second crystal. The RDL focuses
the monochromatic radiation from a point source with
a photon energy E = 17.48 keV. The diffraction param-
eters for the crystals were calculated using the on-line-
program [15]. The focal length of this lens for plane
waves, with allowance for the reduction caused by the
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Fig. 2. Distribution of relative radiation intensity in empty
space in the region near the point of RDL focusing.
The photon energy is 17.58 keV; the distances from the
RDL to the source and to the focus are z0 = z1 = 2.24 m;
silicon crystals; 220 reflection; asymmetry factors b = 1/20
and 20 for first and second crystals, respectively. Beryllium
lens, R = 1 mm, A = 2 mm. 
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reflection from the second crystal, is approximately
Fs = R/(2δb2) = 1.12 m. The real distance z1 from the
RDL to the focus depends on the distance z0 from the
source to the RDL. All three distances satisfy the lens
formula: + = .

Figure 2 presents the case where z0 = z1. Corre-
spondingly, z1 = 2Fs, and focusing occurs at a distance
of about 224 cm. The plot in Fig. 2 is a two-dimen-
sional intensity distribution in the (x, z) plane; the
coordinate z changes in the range corresponding to the
lens focal depth. The intensity normalization was per-

−1
0z −1

1z −1
sF
CR
formed with allowance for the energy conservation
law, i.e., the intensity in the focus is assigned by the
intensity before the RDL. The relative intensity before
the RDL is unity. The total intensity falling in the
focus is equal, correspondingly, to the RDL aperture.
If the RDL does not absorb, the total intensity in the
focus is compressed into a peak, the integral from
which is approximately equal to the product of the
beam FWHM by the maximum intensity. Roughly
speaking, the number of times the beam is compressed
is equal to the number of times its maximum intensity
increases. If this does not hold true, there are intensity
losses.

The upper part of Fig. 2 shows colored intensity
distribution with a low accuracy, but with indication of
exact values of coordinates x and z. In the lower part of
the figure the intensity distribution is shown in the
axonometric surface projection in three-dimensional
space. One can see well how intensity changes, but all
changes are distorted by projecting. Figure 2 demon-
strates that the intensity distribution is not purely
Gaussian: it has complex tails with additional low
maxima. The main peak has an almost standard
shape, observed in the case of focusing by a refractive
lens with a finite aperture and without absorption.
It can be seen that the RDL focuses radiation, but, in
comparison with the beam parameters in the focus for
the CRL composed of 400 elements, the effect is
rather modest.

Indeed, the peak half-width (full width at half
maximum) in the focus is wf = 1.5 μm and the height
is hf = 51. At these parameters the integral of the
Gaussian is S = 1.065wf hf = 81 μm, whereas the effec-
tive RDL aperture with allowance for the reflection by
the crystal is 2 mm/b = 100 μm. In other words, there
are still small losses. Note that the results of the calcu-
lation performed in [5] show the same peak half-
width, but the maximum is larger by a factor of 4.
The reason for this difference is as follows: the value
reported in [5] is the ratio of the focused intensity at
the RDL focal point to the intensity in the same point
without focusing, i.e., at a distance double as large as
that in this study, while the dependence of intensity on
distance in the absence of RDL is quadratic. Specifi-
cally this circumstance led to the effective increase in
intensity by a factor of 4. Thus, the result of the calcu-
lation performed in [5] in quite a different way and
with a very low accuracy, coincides with the calcula-
tion result obtained here.

It should be noted that the RDL is an analog of
CRL only in the sense that it has the same focal length.
The peak half-width in the focus for CRL, according
to the data of the on-line-program [3], is 0.161 μm,
and the peak height is 2904. In other words, the CRL
focusing efficiency is many times higher. The reason
for this difference is that the effective CRL aperture
under these conditions is 510 μm. Being formed by
absorption, it compresses the beam stronger than the
YSTALLOGRAPHY REPORTS  Vol. 69  No. 4  2024
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Fig. 3. Distribution of relative radiation intensity in empty
space in the region near the point of RDL focusing at the
same parameters as in Fig. 2, except for z0 = 50 m and z1 =
1.15 m. 
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RDL by a factor of not 5 but almost 10. The specificity
of focusing by a lens with absorption was discussed
in [4]. Note that the maximum of relative intensity for
CRL is larger by a factor of more than 50 than that for
RDL. It is of interest that even if the first crystal would
reflect the beam symmetrically the RDL anyway
could not function normally. There are two reasons
for this.

The first reason is that the focus position at asym-
metric reflection depends strongly on the photon
energy. In this case the lens demonstrates the emission
spectrum with a high accuracy. This version was pro-
posed in [6] as a new-type spectrometer. In this case
the distance from the RDL to the source should be
very large to make the angular width of the aperture
small; otherwise, even symmetric reflection would not
work. Let us consider the limiting case, where a plane
wave is incident on the lens, i.e., z0 >> z1. Then z2 = Fs.
Let F0(x) determine the radiation WF directly behind
the second crystal. The radiation is focused at the dis-
tance z2 (the point x0) and the WF in the focus, F1(x),
is determined by the integral

(9)

According to (2), at a small shift of photon energy ΔE,
the function F0(x) gains an additional phase factor
exp(–i bx). The other changes in the function are
small and can be neglected. Adding an exponential to
the integrand, one can easily find that the focal point
is shifted by

(10)
With the parameters considered here, the shift of the
focus by 1 μm is obtained at ΔE/E = 2.5 × 10–7. Such
a strong sensitivity to the spectrum can be suppressed
in only the experimental scheme, when the product of
the asymmetry parameters in the two RDL crystals
is unity.

The second reason is that the angular range of
asymmetric reflection of the second crystal is fairly
narrow, and the crystal would not be able to reflect the
whole angular aperture of the lens even for a lens of
large focal length. Figure 3 shows the intensity distri-
bution near the focus for the same RDL but at z0 =
50 m (a distance typical of third-generation SR
sources). In this case, according to the lens formula,
the beam is focused at z1 = 1.15 m. Since the focal
length decreased, the peak half-width in the focus
became smaller: wf = 0.898 μm. It is of interest that the
peak slightly shifted from the center (by 0.5 μm).
The inequality of distances breaks symmetry, and the
SR beam reflection by the crystals is not symmetric;
therefore, a small shift occurs at reflection. The rela-
tive intensity in the maximum is hf = 61.5.

It is of interest that the total intensity in this case is
about S = 1.065wfhf = 55 μm, i.e., the beam intensity
focused by the lens is lost almost by half. The reason is

= λ π λ
–1 2
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that the shorter focal length increased the angular
aperture of the lens, while the angular width of the
reflection by the second crystal did not change; i.e.,
the second crystal reflected only part of intensity.
The angular width Δθ for the beam incident on the sec-
ond crystal (the input beam) is determined by the
range of angles θ = q/K in which the parameter a in
equation (5) is purely imaginary at zero absorption.
Carrying out calculations, we obtain

(11)

At the values of parameters considered here, Δθ =
2.4 × 10–6 rad. At the same time, the angular aperture
of the lens under consideration for plane waves is Aθ =
A/F1 = 4.5 × 10–6 rad. In other words, the crystal
reflected only half of the lens angular aperture.

When divergent radiation is incident on a lens, its
angular aperture decreases, and the reflection by the
second crystal becomes more complete. However,
incomplete reflection of the beam by the first crystal
may occur in this case. For the first crystal, the input-
beam angular width is larger by a factor of b = 20, but
the lens angular width is determined by the real dis-
tance to the source (z0) after reducing the lens aperture
by a factor of b.

Obviously, at specified crystal parameters, reflec-
tion indices, photon energy, and lens material, one
cannot arbitrarily choose such lens parameters as R
and A. For laboratory experiments, the case with

θΔ = χ θ1/2
B( (2 / sin 2 ).)h b
4
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Fig. 4. Dependences of the optimal values of (1) aperture
A and (2) surface curvature radius R of the lens on the
parameter M = z1/z0 at the fixed distance zt = z0 + z1 =
4.48 m. All other parameters are the same as in Fig. 2. 
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a small distance from the source to the focus, zt = z0 + z1,
is most optimal if the detector is installed at the focal
point. Proceeding from the condition Δθ = Aθ and the
lens formula, the equations for calculating the aper-
ture and curvature radius can be written as

(12)

These equations make it possible to obtain the depen-
dence of the parameters A and R on M. Here, A deter-
mines the integral relative intensity as Ae = A/b, and
the formula wf = λz2/Ae allows one to estimate the
beam size in the focus. Estimation is made over lens
for its real focusing distance z2b2 and with allowance
for the beam compression by a factor of b. At the same
time, the formula is standard if one uses the experi-
mental distance after the second crystal and the effec-
tive lens aperture before the first crystal.

It follows from the presented equations that the
beam size in the focus is independent of M at optimal
parameters, because the optimal effective aperture lin-
early depends on the distance z2. The beam size in the
focus depends on the lens angular aperture, which
does not change. Figure 4 shows the dependences of A
and R on M at zt = 4.48 m. The values at M = 1 are
close to the data presented in Fig. 2, i.e., A = 2 mm,
R = 1 mm. It can be seen that the total intensity
increases with an increase in M. However, one should
remember that the projection of source sizes also
increases with M, which may increase significantly the
beam size in the focus. In addition, lenses with a large
aperture can work efficiently only for radiation of very
high coherence, which is always problematic in labo-
ratory experiments.

It is known that the diffractive reflection by crystals
exists in only a limited spectral range of radiation.
One can install crystals at correct angular positions,
but one should not form unreasonably a monochro-
matic beam. Any radiation has a spectrum. Broadband

= χ θ = δ +
=

3/2 2
2 B 2
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hA z b R z b M
M z z
CR
radiation cannot be focused by a refractive lens, but
the CRL sensitivity to the spectral width is not very
high yet. The sensitivity of diffractive reflection is
much higher. One can compensate the transverse shift
of a focused beam but cannot obtain reflection when
the Bragg condition is not satisfied.

According to (3), when the radiation photon
energy deviates by ΔE from the value exactly corre-
sponding to the Bragg condition for a fixed angular
orientation of crystal, the angular range of the reflec-
tion shifts by Δθ0 = qb/K = (ΔE/E)tan(θB). On the
other hand, the angular range of the lens focusing does
not change. If crystals are correctly oriented, it corre-
sponds to the angular range of reflection by the second
crystal. The angular range of reflection by the first
crystal may be larger, and its shift will change nothing.
However, after the reflection by the first crystal, the
beam direction changes by the angle Δθ1 = –Δθ0(b1 – 1).
The shift of the angular range relative to the beam
direction is Δθ2 = Δθ0 – Δθ1 = Δθ0/b. It is known that
a lens does not change the general beam direction,
corresponding to the ray passing through the lens cen-
ter; therefore, the lens can be disregarded in this con-
sideration. Obviously, at Δθ2 = СΔθ, the beam inten-
sity reflected by the crystal will decrease by half.
A rough estimation of the parameter C gives (1–2‒1/2) =
0.3. Practice has shown that a better coincidence with
the calculation result is obtained at C = 0.36.

This condition gives an estimated width of radia-
tion spectrum that can be focused by RDL in the form

(13)
where the factor 1.44 is equal to 4C. This estimate is in
no way related to focusing and determined by only the
crystals. For the case considered in Fig. 2,
(ΔE/E)fwhm = 1.8 × 10–4, which is in good agreement
with the results of numerical calculations according to
the XRWP program, as well as with the calculation
results reported in [5].

The dependence of the relative intensity integrated
over coordinate x on the photon energy for the RDL
under consideration, at the same parameters as in
Fig. 2, is shown in Fig. 5. Note that this dependence is
not quite symmetric, and its maximum is slightly
shifted from the center. However, the deviations from
the symmetric curve are small. It is of interest that
focusing occurs for practically all energies, and only
the maximum intensity changes. The decrease in the
intensity is due to the fact that the part of the lens aper-
ture that focuses rays decreases. The other part either
does not fall on the lens or is not reflected by the sec-
ond crystal.

Summing up, the following conclusion can be for-
mulated: it is fairly difficult to increase the intensity by
a factor of more than 100 in the experimental scheme
considered here, and the beam width in the focus can-
not be much smaller than 1 μm. These limitations are
determined by the small angular width of asymmetric

Δ = χ θ θ1/2
B B( ) (/ 1.44 / si ( ) ( ))n 2 tan ,fwhm hE E b
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Fig. 5. Energy spectrum of the radiation focused by RDL,
i.e., the intensity in the focus, integrated over the coordi-
nate x, in dependence of the photon energy for the same
RDL parameters as in Fig. 2.
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reflection by a crystal with a decrease in the beam
width.
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