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Представлены первые результаты использования нового экспериментального метода фазо-
во-контрастной микроскопии микрообъектов с использованием синхротронного излучения и 
нанофокусирующей линзы в конической геометрии. В эксперименте формируется вторичный 
источник излучения в фокусе линзы на малом расстоянии от микрообъекта, что позволяет полу-
чить его увеличенное изображение. В условиях ближнего поля структура микрообъекта относи-
тельно легко определяется из экспериментального изображения на основе уравнения транспорта 
интенсивности. Эксперимент выполнен на источнике “КИСИ-Курчатов”. Использовался мо-
дельный слабо поглощающий микрообъект, а именно коммерчески доступное углеродное во-
локно марки ВМН-4. Получены размеры и особенности структуры волокна с субмикронным 
пространственным разрешением, которые совпадают с результатами электронной микроскопии.
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ВВЕДЕНИЕ
Методы когерентной рентгеновской микроско-

пии широко используются для визуализации вну-
тренней структуры микрообъектов на современ-
ных источниках синхротронного излучения (СИ). 
Когерентность пучка СИ позволяет изучать струк-
туру слабо поглощающих объектов, исследование 
которых с использованием микроскопии поглоще-
ния затруднено или невозможно. Задача развития 
новых когерентных методов исследования являет-
ся актуальной в связи со строительством в России 
источников СИ четвертого поколения [1]. Наибо-
лее широко используемым рентгеновским методом 
когерентной визуализации является фазово-кон-
трастная микроскопия (ФКМ) [2, 3]. В этом мето-
де фазовый сдвиг волновой функции излучения в 
материале исследуемого объекта преобразуется в 
контраст интенсивности при распространении СИ 
в пустом пространстве.

Характер распределения интенсивности на де-
текторе определяется длиной волны l, размером 
объекта D и расстоянием Z после объекта. Наибо-
лее простым вариантом ФКМ является измерение 

при относительно малых расстояниях (ближнее 
поле), когда выполняется условие D2 >> lZ. В этом 
случае контраст интенсивности возникает вбли-
зи границ областей с разной оптической плотно-
стью, что часто позволяет получить информацию 
об объекте без сложных вычислений. Вместе с тем 
использование ближнего поля связано с двумя 
принципиальными ограничениями.

Первое ограничение связано с тем, что разреше-
ния современных двумерных детекторов (~0.5 мкм) 
недостаточно для детальной регистрации изобра-
жений объектов размерами ~1 мкм. Данная про-
блема может быть преодолена путем увеличения 
изображения в конической геометрии эксперимен-
та, когда перед исследуемым образцом формирует-
ся вторичный источник СИ с малыми размерами. 
Ранее была теоретически рассмотрена [4, 5] и экс-
периментально реализована [6] подобная схема на 
основе нанофокусирующей составной преломляю-
щей линзы (НСПЛ) [7, 8]. Показано, что использо-
вание НСПЛ позволяет визуализировать структуру 
периодических микрообъектов с периодом менее 
0.5 мкм даже при ограниченной пространственной 
когерентности пучка СИ.
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Второе ограничение заключается в том, что для 
получения количественной информации о рас-
пределении толщины или электронной плотности 
объекта требуется вычисление фазового сдвига из 
измеренного распределения интенсивности СИ. 
В  условиях ближнего поля для этой цели широ-
ко используются методы, основанные на решении 
уравнения транспорта интенсивности (УТИ) [9–12]. 
В общем случае численное решение УТИ позволя-
ет вычислить поперечное распределение фазы из 
измеренных значений относительной интенсивно-
сти СИ и ее первой производной по продольной 
координате z. Однако при использовании ряда до-
пущений (например, отсутствие поглощения) для 
восстановления фазы можно использовать лишь 
поперечное распределение интенсивности. Реше-
ние обратной задачи ФКМ с использованием УТИ 
отличается простотой реализации, так как сводит-
ся к численному решению уравнения Пуассона с 
применением алгоритма быстрого преобразования 
Фурье.

В настоящей работе представлена успешная ре-
ализация количественной фазово-контрастной ви-
зуализации слабо поглощающих микрообъектов с 
использованием УТИ в конической схеме экспери-
мента на основе НСПЛ. Проведен анализ приме-
нимости УТИ для решения обратной задачи ФКМ 
при использовании вторичного источника СИ в 
фокусе НСПЛ. Результаты получены на источнике 
“КИСИ-Курчатов” с использованием модельного 
микрообъекта малых размеров, который слабо по-
глощает, и конической экспериментальной схемы 
в условиях ближнего поля.

ТЕОРИЯ
Экспериментальная схема ФКМ обычно вклю-

чает в себя источник СИ, монохроматор, иссле-
дуемый микрообъект и детектор, расположенные 
вдоль оптической оси (ось z системы координат). 
Источник СИ находится на расстоянии 10–100 м 
от микрообъекта и имеет конечные размеры в пло-
скости, перпендикулярной оптической оси (x, y), 
причем разные его точки излучают некогерентно. 
СИ предварительно монохроматизируется с помо-
щью двухкристального монохроматора, который 
выделяет определенную длину волны l из спектра, 
не изменяя направления распространения излу-
чения. Поэтому его влияние можно не учитывать, 
считая, что микрообъект освещается монохрома-
тичным излучением от разных точек источника 
независимо. Распределение интенсивности после 
микрообъекта регистрируется двумерным высоко-
разрешающим детектором.

Стандартную схему с конечным расстоянием 
от источника до объекта в теории можно приве-
сти к масштабированию результатов для бесконеч-
но удаленного источника, т.е. для падающей пло-
ской волны с интенсивностью I0. Поэтому удобно 

предварительно рассмотреть этот случай. Будем 
считать, что микрообъект имеет однородный со-
став и описывается показателем преломления 
n = 1 – d +  ib, где d описывает фазовый сдвиг, а 
b - уменьшение модуля волновой функции СИ из-
за поглощения. Толщина микрообъекта вдоль оси 
z изменяется в зависимости от поперечных коорди-
нат и описывается функцией t(x, y). Случай одно-
родной толщины и поперечной зависимости n(x, y) 
является эквивалентным.

В  приближении  геометрической  оптики [13] 
относительная интенсивность СИ сразу после 
прохождения микрообъекта определяется как  
I(x, y)/I0 = exp[–2kbt(x, y)], а фаза волновой функ-
ции равна j(x, y) = –kdt(x, y), где k = 2p/l. Измене-
ние интенсивности СИ после микрообъекта вдоль 
оси z в параксиальном приближении описывается 
УТИ [9]:

	 ∇^⋅[I(x, y, z)∇^j (x, y, z)] = –k [∂I(x, y, z)/∂z],	 (1)

где ∇^ – градиент по поперечным координа-
там (x, y). УТИ описывает изменение интенсив-
ности при распространении излучения после объ-
екта за счет неоднородного распределения фазы и 
может быть использовано для вычисления фазы, 
пропорциональной толщине объекта. Для этого 
необходимо измерение интенсивности в плоско-
сти сразу за микрообъектом и на расстоянии z1, 
удовлетворяющем условию ближнего поля. В этом 
случае можно численно оценить производную 
∂I(x, y, z)/∂z как конечную разность DI/z1 [12].

Для микрообъекта с пренебрежимо малым по-
глощением (kbt << 1) уравнение (1) упрощается:

	 ∇^
2j(x, y) = –(k/z1)[It(x, y) – 1],	 (2)

где It(x,  y)  =  I1(x,  y)/I0, I1(x,  y) – распределение 
интенсивности на расстоянии z1 от микрообъекта, 
I0 – интенсивность падающего излучения. Здесь до-
статочно одного измерения интенсивности после 
микрообъекта. Выражение (2) представляет собой 
уравнение Пуассона и может быть численно реше-
но относительно j(x, y) с использованием алгоритма 
быстрого преобразования Фурье [10–12]. Далее при 
известном значении параметра d толщина микро-
объекта рассчитывается как t(x, y) = –j(x, y)/(kd).  
Отметим, что в условиях реального эксперимента 
интенсивность падающего пучка СИ I0 не являет-
ся строго константой. Однако при слабых вариа-
циях интенсивности (∇^I0(x, y) ≈ 0) для решения 
(2) можно использовать измеренное распределение 
интенсивности без микрообъекта на расстоянии z1.

Для реальной геометрии эксперимента с протя-
женным источником СИ, отдельные точки которо-
го излучают некогерентно, результирующее распре-
деление интенсивности представляет собой сумму 
распределений интенсивности для каждого точеч-
ного источника по всем точкам. В параксиальном 
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приближении интенсивность Iz0(x, y, z) при осве-
щении тонкого микрообъекта точечным источни-
ком на расстоянии z0 связана с интенсивностью 
I∞(x, y, z) для плоской волны соотношением

	 Iz0(x, y, z = z1) = M –2I∞(xe, ye, z = ze),	 (3)

где xe  =  x/M, ye  =  y/M, ze  =  z1/M, а параметр  
M = z1/z0 + 1 представляет собой геометрический 
фактор увеличения [6, 13]. То есть изображение 
микрообъекта при освещении точечным источни-
ком эквивалентно изображению при освещении 
плоской волной, но с измененным масштабом по 
поперечным координатам xe,  ye и эффективным 
расстоянием распространения ze. Это позволяет 
решать уравнение (2), справедливое для плоской 
падающей волны, также при освещении микро
объекта точечным источником с заменой I1(x, y) 
на Iz0(Mx, My) и z1 на ze.

Смещение точечного источника перпендику-
лярно оптической оси в точку с координатами xs, ys 
приводит к смещению изображения как целого на 
расстояния (M – 1)xs и (M – 1)ys по осям x и y со-
ответственно. В результате, если яркость источни-
ка СИ задана функцией S(x, y), изображение ми-
крообъекта Id(x, y) при освещении протяженным 
источником принимает вид

	 Id(x, y) = Iz0(x, y) * P(x, y),	 (4)

где P(x, y) = S(x/[M – 1], y/[M – 1]) – функция про-
екции источника на плоскость изображения. Сим-
волом * обозначена операция двумерной свертки. 
Для источников СИ яркость S(x, y) обычно хорошо 
аппроксимируется двумерной функцией Гаусса.

Отметим очевидное свойство уравнения (2). 
Если j(Mx, My) является решением для интенсив-
ности Iz0(Mx, My), то для интенсивности Id(Mx, My) 
из (4) решением будет

	 jd(Mx, My) = j(Mx, My) * P(Mx, My).	 (5)

Отсюда следует, что точность изображения фазы, 
полученного путем решения уравнения (2), опре-
деляется размером проекции источника СИ. От-
метим, что точность также уменьшается с увеличе-
нием расстояния, на котором регистрируется рас-
пределение интенсивности, так как уравнение (2) 
справедливо только в приближении ближнего 
поля. Однако численные расчеты показывают, что 
даже при нестрогом выполнении критерия ближ-
него поля фаза определяется с удовлетворительной 
точностью.

Стандартная геометрия эксперимента на источ-
нике СИ соответствует условию z0 >> z1, и увели-
чение изображения практически отсутствует, так 
как M ≈ 1. Для получения сильного увеличения не-
обходимо использовать обратное условие z0 << z1, 
соответствующее конической геометрии. В этом 
случае M ≈ M – 1 = z1/z0, и масштаб изображения 

неограниченно растет с увеличением z1. Кроме 
того, критерий ближнего поля определяется эф-
фективным расстоянием ze ≈ z0, т.е. характер изо-
бражения практически не зависит от z1. При этом 
с ростом z1 одновременно с увеличением изобра-
жения растет масштаб функции проекции источ-
ника P(x, y). С учетом (5) видно, что в такой схеме 
разрешение восстановленного изображения фазы 
jd(Mx, My) определяется не проекцией источника 
СИ, а непосредственно его размером.

С практической точки зрения расположить ис-
следуемый микрообъект близко к источнику СИ 
невозможно. Кроме того, размеры современных 
источников СИ составляют 10–100 мкм, поэто-
му размер проекции источника будет значительно 
больше размера изображения. Проблемы можно 
решить новым методом нанофокусировки пучка 
СИ с помощью планарной НСПЛ [7, 8] для форми-
рования перед микрообъектом вторичного источ-
ника [4–6]. Экспериментальная схема ФКМ на ос-
нове планарной НСПЛ представлена на рис. 1.

Планарные НСПЛ состоят из большого числа N 
одинаковых фокусирующих элементов. Преломля-
ющая поверхность элементов представляет собой 
параболический цилиндр, что обеспечивает линей-
ную фокусировку в одной плоскости. Создаваемые 
сегодня кремниевые НСПЛ с апертурой 50 мкм от-
личаются высокой точностью изготовления и обе-
спечивают фокусировку когерентного пучка СИ до 
поперечного размера менее 50 нм [14]. Аналитиче-
ская теория фокусировки СИ с помощью НСПЛ 
развита в [15–19]. Для проведения расчетов фо-
кусировки СИ на основе уравнений развитой те-
ории доступна программа XRWP [20], а также он-
лайн-программа [21], позволяющая рассчитывать 
параметры сфокусированного пучка.

Из теории следует, что для сильно поглощаю-
щих СПЛ волновая функция сфокусированного 
излучения представляет собой функцию Гаусса, 
которая характеризуется полушириной в фоку-
се wf и угловой расходимостью Dq. Эти параметры 
связаны соотношением wf = 0.441(l/Dq). Для до-
статочно большого расстояния от фокуса z0 >> zR, 
где zR  =  2.27(wf/l) – длина Рэлея, поперечная 

2 x

z

z0 z1

1 4

3

Рис. 1. Экспериментальная схема ФКМ с использовани-
ем планарной НСПЛ: 1 – монохроматический пучок СИ, 
2 – НСПЛ, 3 – исследуемый микрообъект, 4 – детектор.
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зависимость фазы является параболической, что 
соответствует точечному источнику в параксиаль-
ном приближении. Это означает, что НСПЛ может 
быть использована для увеличения изображения 
микрообъекта аналогично точечному источнику. 
Разница между этими двумя случаями в том, что 
для гауссового пучка необходимо учитывать ко-
нечную расходимость Dq для обеспечения полно-
го освещения микрообъекта. При этом полуши-
рина интенсивности пучка на образце w0 должна 
быть больше размера образца для выполнения ус-
ловия равномерного освещения в (2). Например, 
для энергии фотонов E = 12 кэВ (l = 0.1 нм), если 
размер пучка в фокусе wf  =  50  нм, угловая рас-
ходимость Dq  =  911  мкрад. Тогда на расстоянии 
z0 = 20 мм полуширина пучка w0 = 18 мкм, что до-
статочно для освещения микрообъекта с характер-
ным размером D = 10 мкм. Условие ближнего поля 
D2 >> lz0 в этом случае также выполняется.

Для протяженного источника СИ в фокусе 
НСПЛ формируется его уменьшенное изображе-
ние. Каждой точке источника СИ соответствует 
наноразмерный гауссов пучок в фокусе. Как по-
казано в предыдущем абзаце, каждый такой гаус-
сов пучок можно приближенно считать точечным 
источником. Тогда вторичный источник СИ можно 
также рассматривать как набор точечных источни-
ков, излучающих некогерентно. Таким образом, с 
учетом (5) разрешение восстановленного изобра-
жения фазы микрообъекта ограничено некогерент-
ным размером вторичного источника СИ в фоку-
се НСПЛ. Отметим, что в реальном эксперименте 
данный размер может быть увеличен за счет других 
факторов, например из-за наличия вибраций эле-
ментов оптической схемы.

ЭКСПЕРИМЕНТ
Эксперимент выполнен на станции РКФМ 

(Рентгеновская кристаллография и физическое 
материаловедение) источника “КИСИ-Курчатов”. 
На станции РКФМ СИ генерируется поворотным 
магнитом, расположенным на расстоянии zs = 15 м 
от исследуемого образца. Источник СИ аппрокси-
мируется двумерной функцией Гаусса с полуши-
риной ~100 мкм в вертикальном направлении и 
~1000 мкм в горизонтальном. Монохроматизация 
пучка СИ осуществляется с помощью двухкри-
стального монохроматора Si(111), угловое положе-
ние которого было настроено на энергию фотонов 
E = 12 кэВ. Детальное техническое описание стан-
ции РКФМ представлено в [22].

Модельный образец представлял собой коммер-
чески доступное углеродное волокно (УВ) марки 
ВМН-4 [23]. На рис. 2 представлена фотография 
одиночных УВ, полученная с помощью сканирую-
щей электронной микроскопии (СЭМ). УВ ВМН-4  
имеют приблизительно эллиптическое сечение 
размером ~8 и 5 мкм вдоль большой и малой оси 

соответственно. Средняя плотность составляет 
~1.7 г/см3. Из рис. 2 также видно, что отдельные 
УВ имеют характерное углубление по всей длине, 
возникающее в результате высокотемпературного 
отжига. Поскольку исследуемый образец представ-
ляет собой линейный микрообъект, использовали 
схему с одномерным увеличением в направлении, 
перпендикулярном оси УВ.

Для формирования вторичного линейного 
источника использовали НСПЛ из кремния с апер-
турой 50 мкм и числом элементов N = 104. НСПЛ 
была закреплена на гониометре для простран-
ственного и углового позиционирования при на-
стройке экспериментальной схемы. Фокусировку 
осуществляли в вертикальной плоскости, соответ-
ствующей наименьшему размеру источника СИ. 
Для указанных параметров эксперимента теорети-
ческий когерентный размер пучка в фокусе НСПЛ 
составлял wf = 68 нм. Это значение соответствует 
расходимости пучка Dq = 670 мкрад. Образец был 
закреплен на пьезоподвижках, обеспечивающих 
его позиционирование с нанометровой точностью, 
на расстоянии z0 = 20 мм после фокуса НСПЛ. С 
учетом расходимости полуширина пучка на пози-
ции образца составляла w0 = 13.4 мкм, что больше 
диаметра УВ.

Распределение интенсивности регистрирова-
ли с использованием двумерного рентгеновского 
детектора XSight Micron (Rigaku) на основе сцин-
тилляционного экрана и sCMOS-камеры. Детек-
тор был расположен на расстоянии z1 = 275 мм по-
сле образца. Для указанных значений z0 и z1 гео-
метрическое увеличение изображения составляло 
M = 14.75. В эксперименте сначала регистрировали 

10 мкм

Рис. 2. СЭМ-изображение УВ ВМН-4.
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изображение прямого пучка, т.е. распределение ин-
тенсивности без образца I0(x, y) для дальнейшего 
учета фона фазово-контрастного изображения. По-
сле этого позиционировали исследуемый образец в 
расходящемся после НСПЛ пучке СИ и регистриро-
вали изображение фазового контраста I1(x, y).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Увеличенные изображения прямого пучка СИ 

после вторичного источника I0(x,  y) и фазового 
контраста УВ I1(x, y) представлены на рис. 3. Уве-
личение изображений реализовано только в вер-
тикальной плоскости, поэтому число пикселей по 
вертикали больше, чем по горизонтали. Масштаб 
в вертикальном направлении соответствует разме-
рам на позиции образца с учетом (3). Эффектив-
ный размер пикселя детектора в вертикальном на-
правлении с учетом геометрического увеличения 
составляет 22 нм.

Распределение интенсивности прямого пучка 
(рис. 3а) в вертикальном направлении достаточно 
точно описывается функцией Гаусса, что соответ-
ствует аналитической теории фокусировки с помо-
щью НСПЛ. Незначительные отклонения от иде-
альной гауссовой формы связанны с неравномер-
ным распределением интенсивности падающего на 
НСПЛ пучка СИ. Введение в пучок УВ приводит к 
возникновению сильного контраста в распределе-
нии интенсивности в вертикальном направлении 
(рис. 3б). В горизонтальном направлении изобра-
жение сильно размыто из-за относительно боль-
шого размера источника СИ в этом направлении и 
отсутствия фокусировки в горизонтальной плоско-
сти. Однако для одномерного образца это не явля-
ется ограничением, так как его толщина приблизи-
тельно постоянна вдоль x.

Помимо контраста на границах УВ наблюдает-
ся усиление интенсивности в центре изображения, 

связанное с градиентом толщины УВ в области ха-
рактерного углубления (рис. 2). Отметим, что для 
использованной энергии фотонов теоретическое 
поглощение в самой толстой части УВ составляет 
менее 0.2%, т.е. УВ можно считать рентгенопро-
зрачным объектом, и контраст интенсивности на 
рис. 3б является чисто фазовым.

Для  восстановления  фазы  из  измерен-
ных  изображений  была  рассчитана  функция 
It(x, y) = I1(x, y)/I0(x, y) в уравнении (2). Изображе-
ние It(x, y) представлено на рис. 4а. Можно прибли-
женно считать, что данное изображение соответ-
ствует случаю падающей плоской волны с единич-
ной интенсивностью. Видно, что на изображении 
присутствует высокочастотный фон, связанный с 
дробовым шумом при регистрации сигнала детек-
тором. Тем не менее контраст интенсивности до-
статочно яркий по сравнению с уровнем шума. Вос-
становление распределения фазы из изображения 
It(x, y) проведено путем численного решения (2) с 
использованием алгоритма быстрого преобразова-
ния Фурье. После этого распределение толщины 
было рассчитано как t(x, y) = –j(x, y)/(kd).

Восстановленное изображение t(x, y) представ-
лено на рис. 4б. На изображении отчетливо вид-
ны границы УВ, а также характерное углубление в 
центральной части. Диаметр УВ в плоскости изо-
бражения равен приблизительно 8.5 мкм, что не-
много больше реального большого диаметра УВ 
~8 мкм. Максимальная восстановленная толщина 
вдоль оптической оси составляет ~4.5 мкм при ре-
альном значении малого диаметра УВ ~5 мкм. Уве-
личение размера в плоскости изображения и сни-
жение толщины могут быть объяснены размытием 
изображения в соответствии с (5) из-за конечного 
размера вторичного источника в фокусе НСПЛ. 
Это приводит как к размытию границ в плоскости 
изображения, так и к уменьшению значений тол-
щины t(x, y).

0
0

5

10

15

20

5 10 15 20

y,
 м

км

x, мкм
0

0

5

10

15

20

5 10 15 20

y,
 м

км

x, мкм

0.2

0.4

0.6

0.8

1.0

I 0(x
, y

), 
от

н.
 ед

.

0.2

0.4

0.6

0.8

1.0

I 0(x
, y

), 
от

н.
 ед

.

(а) (б)

Рис. 3. Зарегистрированные изображения пучка СИ после НСПЛ (а) и фазового контраста УВ (б).
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На восстановленном изображении можно за-
метить наличие артефактов в виде искажений во-
круг  УВ. Такие искажения связаны с шумом на 
изображении фазового контраста. При решении 
уравнения (2) с использованием преобразования 
Фурье происходит усиление высоких частот, что 
проявляется в виде артефактов на восстановлен-
ном изображении [11, 12]. Такие артефакты могут 
значительно искажать результат восстановления. 
Однако при использовании источника СИ с высо-
кой яркостью это не является значительной про-
блемой, так как соотношение сигнал/шум будет 
достаточно большим.

Как следует из теории, точность восстановлен-
ного с использованием уравнения (2) изображения 
определяется некогерентным размером вторичного 
источника в фокусе НСПЛ. Этот размер определя-
ется как размером источника СИ, так и наличием 
вибраций элементов экспериментальной схемы. 
Для использованных параметров эксперимента те-
оретический размер пучка в фокусе НСПЛ с уче-
том конечного размера источника СИ составляет 
100 нм. Однако, как было показано ранее [6, 24], 
реальный размер пучка в фокусе НСПЛ на стан-
ции РКФМ для указанных параметров составляет 
~0.5 мкм из-за вибраций. Таким образом, разреше-
ние восстановленного изображения толщины со-
ставляет ~0.5 мкм и ограничено в первую очередь 
механической нестабильностью элементов экс-
периментальной схемы, а не конечной простран-
ственной когерентностью пучка СИ. При исклю-
чении данного фактора теоретически может быть 
достигнуто пространственное разрешение ~100 нм 
даже на источнике СИ второго поколения. Реали-
зация предложенной экспериментальной схемы на 
источнике СИ третьего или четвертого поколения 
позволит достичь еще лучшего разрешения.

ЗАКЛЮЧЕНИЕ
Продемонстрирована применимость уравнения 

транспорта интенсивности для количественного 
восстановления распределения толщины рентгено-
прозрачного микрообъекта методом фазово-кон-
трастной микроскопии при использовании вто-
ричного источника СИ в фокусе нанофокусирую-
щей составной преломляющей линзы. Показано, 
что пространственное разрешение восстановлен-
ного изображения определяется некогерентным 
размером пучка СИ в фокусе линзы.

На станции РКФМ источника “КИСИ-Кур-
чатов” реализована экспериментальная схема с 
использованием линзы из кремния с апертурой 
50 мкм и получено изображение УВ диаметром 
~8 мкм. Это изображение восстановлено из экс-
периментальных данных по измерению интенсив-
ности и согласуется с данными СЭМ. Простран-
ственное разрешение полученного изображения 
составляет ~500 нм и ограничено в первую оче-
редь механической нестабильностью элементов 
экспериментальной схемы. При исключении дан-
ного фактора возможно достижение разрешения 
~100 нм на источнике СИ второго поколения. На 
источнике СИ третьего или четвертого поколения 
использование линзы теоретически позволит до-
стичь еще большего разрешения.

Работа проведена в рамках выполнения госу-
дарственного задания НИЦ “Курчатовский ин-
ститут”. Работа В.А. Юнкина по созданию крем-
ниевых преломляющих линз частично поддержана 
в рамках госзадания № 075-00295-25-00 (STATE 
TASK № 075-00295-25-00).
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Abstract. We present the first results of a new experimental method for phase-contrast microscopy of 
microobjects based on synchrotron radiation and a nanofocusing lens in a conical geometry. In the 
experiment, a secondary radiation source is formed at the lens focus, located at a short distance from the 
microobject, enabling the acquisition of its magnified image. Under near-field conditions, the structure 
of the microobject can be relatively easily retrieved from the experimental image using the transport-of-
intensity equation. The experiment was conducted at the KISI-Kurchatov synchrotron radiation source. 
A model weakly absorbing microobject, namely a commercially available carbon fiber of grade VMN-4, 
was used. The fiber dimensions and structural features were obtained with submicron spatial resolution, 
in agreement with the electron microscopy results.
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