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Обсуждаются проблемы экспериментального исследования реальной структуры кристаллов ме-
тодом фазово-контрастного изображения в синхротронном излучении (СИ), предложены спо-
собы их решения. Эксперимент выполнен на источнике СИ “Pohang Light Source” в г. Поханг, 
Республика Корея. Исследовались кристаллы алмаза. Анализируются возможности метода в ис-
следовании слабых изменений плотности кристаллов в условиях пространственно неоднородной 
интенсивности пучка и наличия статистического шума как в самом пучке, так и в детекторе без 
пучка. Получены изображения различной формы и структуры, указывающие на наличие дефек-
тов в кристалле, однако их идентификация требует более детального анализа. 
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ВВЕДЕНИЕ
Рентгеновское излучение нашло широкое при-

менение после своего открытия в 1895 г., причем 
сразу в двух областях: дифракции на атомной ре-
шетке в кристаллах и получении изображений 
внутренней структуры материалов методом неод-
нородного поглощения. До сих пор методы иссле-
дования в этих областях развиваются и совершен-
ствуются. Пространственный период колебаний 
электромагнитного поля в жестком синхротронном 
излучении (СИ) с энергией фотонов 10–20 кэВ со-
поставим, точнее не сильно меньше периода кри-
сталлической решетки, поэтому углы дифракции 
относительно большие, что удобно для экспери-
ментов. С другой стороны, преломление лучей на 
границе двух сред весьма слабое и лучи проходят 
через объект практически без изменения траекто-
рии. Изображение некристаллических объектов с 
размером, не сильно отклоняющимся от размеров 
человеческого тела, а также слабопоглощающих 
кристаллов вне условий Брэгга получается без ис-
кажений и определяется только поглощением. То 
есть хорошо видны оптически плотные участки 
объекта.

Однако при уменьшении размеров неоднород-
ностей в просвечиваемом объекте контраст по-
глощения становится слабым. В этом случае более 
четкое изображение можно получить в когерент-
ном излучении за счет изменения фазы волновой 

функции СИ. На малом расстоянии от объекта де-
тектор не регистрирует фазу, но с увеличением рас-
стояния изменение фазы преобразуется в измене-
ние интенсивности и можно получить фазово-кон-
трастное изображение [1,  2]. Таким способом 
изучаются как мелкие объекты на воздухе [3–7], 
так и разного типа мелкие изменения электрон-
ной плотности в кристаллах [8–14]. Резкие изме-
нения плотности возникают в порах, например в 
дислокационных микротрубках [10–12] в кристал-
ле карбида кремния, а также в сферических порах, 
аккумулирующих вакансии в таких кристаллах, как 
сапфир, карбид кремния и других [13]. Поры от-
носительно большого размера могут иметь самые 
разные формы, не только сферические [15, 16].

Исследование таких объектов частично упро-
щается тем, что их форма примерно известна и 
остается только определить размер. Также с помо-
щью численного моделирования легко получить 
полное понимание, как эти изображения форми-
руются [13, 14]. Недавно удалось идентифициро-
вать и определить высоту ~1 мкм ступеней роста на 
поверхности кристаллов сапфира [17–20]. Однако 
в других кристаллах, например в алмазе, таких де-
фектов нет, но могут быть другие дефекты [21], ко-
торые до сих пор не изучались методом фазового 
контраста. Результаты такого исследования впервые 
представлены в настоящей работе, а также обсужда-
ются проблемы, которые при этом возникают.
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На станциях современных источников СИ для 
регистрации изображений используются двумер-
ные координатные детекторы, которые могут иметь 
битые пиксели. Сам пучок СИ может иметь конеч-
ные размеры и относительно высокую неоднород-
ность, а также статистический шум. Все это умень-
шает качество экспериментальных результатов и 
требует их тщательного анализа математическими 
методами обработки изображений.

СХЕМА ЭКСПЕРИМЕНТА  
И МЕТОД ИССЛЕДОВАНИЯ

Схема эксперимента по получению изображе-
ний мелких неоднородностей в кристаллах прак-
тически ничем не отличается от схемы получения 
изображений мелких объектов на воздухе. Она 
включает в себя источник излучения, монохрома-
тор, кристалл и детектор (рис. 1). Результаты изу-
чения кристаллов алмаза были получены на стан-
ции 6С (Biology and medical imaging) источника 
“Pohang Light Source” в г. Поханг, Республика Ко-
рея. Использовалось излучение вигглера с энерги-
ей фотонов 25 кэВ, находящейся в начале доступ-
ного диапазона энергий 23–50 кэВ на данной стан-
ции. На станции установлен детектор Orca-Fusion 
(Hamamatsu Photonics, Japan), способный прово-
дить измерения при любом уровне освещенности, 
но особенно в условиях низкой освещенности. 
Низкий уровень шума считывания детектора оз-
начает, что даже небольшое количество фотонов, 
регистрируемое от просвечиваемого объекта, не 
теряется в паразитном шуме, а обнаруживается 
количественно. Детектор записывал данные в фай-
лы формата tiff целыми числами длиной 2 байта 
(16 бит) и создавал картинку квадратных размеров 
с числом пикселей 2304 на каждой стороне. Эф-
фективный линейный размер пикселя составлял 
0.325 мкм. Такой размер получается пересчетом 
реального размера пикселя 6.5 мкм после деления 
на 20. Как раз такое увеличение картинки достига-
лось преобразованием СИ в свет оптического ди-
апазона в кристаллическом сцинтилляторе, после 

чего картинка увеличивалась в 20 раз оптическим 
объективом.

В результате линейный размер изображения, 
которое детектор мог зафиксировать без сканиро-
вания, равнялся 750 мкм. Этот размер был соизме-
рим с эффективным размером пучка СИ, который 
формирует система щелей при заданном увеличе-
нии объектива. При этом падающее на детектор 
излучение давало неоднородную картинку даже 
без образца. В этих условиях измерения необходи-
мо проводить в три этапа. Прежде всего записы-
валась картинка темного детектора, то есть, ког-
да падающий пучок СИ был перекрыт заслонкой. 
Даже в этом случае детектор показывает картинку, 
содержащую статистические неоднородности, а 
также битые пиксели. Необходимо убедиться, что 
интенсивность помех мала, а битые пиксели не мо-
гут оказать существенное влияние на результат.

На втором этапе записывалась картинка пусто-
го пучка СИ, причем такие картинки необходимо 
записать несколько раз, поскольку пучок содержит 
дробовой шум, и необходимо провести его оценку. 
Более детально об этом написано ниже. На третьем 
этапе записывается изображение кристалла в пуч-
ке СИ. Во всех случаях детектор фиксирует интен-
сивность излучения. Очевидно, что изображение 
кристалла получается вместе с изображением пу-
стого пучка, которое содержит также изображение 
темного детектора, включая сцинтиллятор. Чтобы 
исключить паразитные изображения из картинок 
кристалла, нужно выделить числовые матрицы из 
файлов и разделить матрицу кристалла на матрицу 
пустого пучка.

Такая процедура эквивалентна вычитанию кон-
траста пустого пучка из контраста кристалла в этом 
пучке, если оба контраста малы. В результате оста-
ется изображение кристалла в условно плоском 
пучке, что необходимо для обработки фазово-кон-
трастного изображения и решения обратной зада-
чи с целью получить количественную информацию 
о дефектах структуры. Если исследуемый кристалл 
не дает изображения, то должен получиться одно-
родный фон. На самом деле фон получается неров-
ным из-за статистического шума пучка. Величину 
шума можно характеризовать контрастом (видно-
стью), который определим следующим образом: 
V = (Fma – Fmi)/(Fma + Fmi), где Fma и Fmi – макси-
мальное и минимальное значения в матрице изо-
бражения. То есть изображение кристалла должно 
превышать этот шум, иначе информация получает-
ся неверной. Изучить уровень такого шума позво-
ляет деление матриц пустого пучка СИ, получен-
ных в разное время измерений.

Интересно, что шум можно резко уменьшить 
по амплитуде, если выполнить усреднение экспе-
риментальной матрицы методом расчета свертки с 
локализованной функцией разного типа. Наиболее 
удобными являются функция Гаусса и функция, 
отличная от нуля в квадрате заданного размера. 

C1
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D

Рис. 1. Схема эксперимента: C1, C2 – кристаллы-монохро-
маторы 111 Si, O – объект исследования, S – сцинтилля-
тор, M – зеркало из кристалла Si, Z – оптический объектив,  
D – детектор.
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Результаты расчета показали, что такая процедура 
позволяет резко уменьшить амплитуду фонового 
шума, но устранить его совсем не удается. Дело в 
том, что кроме короткопериодного шума в пучке 
существует длиннопериодный шум, который таким 
способом не исчезает, хотя и имеет существенно 
меньшую амплитуду. Этот шум дает изображение, 
которое может исказить изображение объектов 
в кристалле, так как является ложным. Соответ-
ственно, нужно обращать внимание только на та-
кой контраст, который превышает контраст шума 
в пучке СИ.

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ  
И ИХ ОБРАБОТКА

Результаты измерений детектор записывал в 
виде картинок формата tiff, 16 бит. Формат tiff по-
зволяет записывать электронные книги любой сте-
пени сложности, но у него есть и простой вариант, 
когда он просто записывает матрицу целых чисел 
в диапазоне от 0 до 65535, каждое число в 2 байта 
без сжатия. Именно этот вариант используется для 
записи показаний детектора. На первом этапе не-
обходимо проанализировать показания детектора 
при закрытом пучке, т.е. темного детектора, и убе-
диться, что детектор правильно настроен и условия 
эксперимента удовлетворительные.

Сами по себе показания темного детектора ни-
где не используются, но они влияют на другие по-
казания. Поэтому необходимо убедиться, что это 
влияние не критическое. Обработка всех резуль-
татов выполнялась по собственным программам, 
написанным на языке VKACL [22]. Интерпрета-
тор этого языка, все программы, которые на нем 
написаны, а также документацию можно получить 
на указанном сайте. Специальная программа вы-
нимает из tiff-файла числовую матрицу и проводит 
ее предварительный анализ. В частности, можно 
просто получить минимальное, среднее и макси-
мальное значения, а также координаты первых 
наиболее высоких значений.

Темный детектор должен показывать нули, но 
этого не происходит. Матрица имеет ненулевые 
значения. Более того, если среднее значение может 
быть достаточно малым, в данном случае оно рав-
нялось 100, то максимальное значение может быть 
весьма большим. В проведенном исследовании 
оно равнялось 3605, а следующие за ним значения 
были равны 2461, 2436, 2212. Как известно, любой 
координатный детектор имеет битые пиксели. Та-
ких пикселей не так уж и много, но они всегда есть. 
Их показания не нужно учитывать. Как правило, 
они показывают значения, никак не согласован-
ные с соседями, а бывают и кластеры плохих пик-
селей, но реже.

Показать всю квадратную матрицу размером 
2304, в которой нет конкретной картинки, в на-
учной статье сложно. Поэтому на рис.  2 показан 

квадратный фрагмент с линейным размером 200 пи- 
кселей, в центре которого стоит пиксель с макси-
мальным значением. При этом удобно показывать 
натуральный логарифм значений с указанием кон-
кретных координат области в большой матрице. В 
этом случае лучше видно, как изменяются и боль-
шие, и малые значения. Исходная матрица была 
нормирована на интервал от 0 до 1, а логарифм 
минимального и максимального значений показан 
над картинкой. Так как значения битых пикселей 
невелики, никаких специальных мер для учета по-
казаний темного детектора не предпринималось.

На следующем этапе было измерено 10 карти-
нок пучка СИ без кристалла. В квадрате с линей-
ным размером 750 мкм пучок оказался неоднород-
ным. Его изображение примерно похоже на сред-
нюю часть изображения функции Гаусса, но имеет 
некоторые артефакты. Для получения однородно-
го фона необходимо делить матрицу показаний де-
тектора с образцом на матрицу пустого пучка СИ. 
Однако все изображения кристалла имеют стати-
стический шум, который не следует смешивать с 
изображением самого кристалла. Чтобы понять 
уровень шума, разумно разделить матрицы пусто-
го пучка из разных измерений. В этом случае оста-
ется только изображение шума. Сами изображения 
шума можно разделить на короткие и длинные. 
Первые быстро меняются и имеют малый период, 
вторые, наоборот.

Короткий шум можно значительно снизить ме-
тодом усреднения матрицы по некоторому размеру 
путем расчета свертки матрицы с некоторой функ-
цией, отличной от нуля в ограниченной области. 
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Рис. 2. Фрагмент распределения натурального логарифма 
числа отсчетов темного детектора с размером 200 × 200 пик-
селей и с центром, соответствующим координатам самого 
большого пикселя, а именно x = 2145, y = 877. На осях по-
казаны номера пикселей в исходной матрице детектора раз-
мером 2304 × 2304. Карта цветов показана для нормирован-
ного массива. Значения минимума и максимума логарифма 
в реальном массиве равны 4.094 и 8.190, что соответствует 
числам отсчетов 60 и 3605.
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фазово-контрастной микроскопии на источнике 
СИ “Pohang Light Source” (Поханг, Республика Ко-
рея). Обсуждаются особенности и проблемы таких 
измерений, к которым относятся: проверка показа-
ний темного детектора, т.е. без освещения пучком 
СИ, анализ контраста, связанного со статистиче-
ским шумом в пучке СИ, исключение неоднородно-
го распределения интенсивности в падающем пуч-
ке. В результате измерений показано, что кристалл 
имеет самые разнообразные дефекты, в том числе 
локальные дефекты размером ~10 мкм. Из получен-
ных данных можно сделать вывод о целесообразно-
сти использования метода фазово-контрастной ми-
кроскопии для диагностики кристаллов.

Работа выполнена в рамках Государственного 
задания НИЦ “Курчатовский институт” и Госу-
дарственного задания ФТИ им. А.Ф. Иоффе РАН.
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PROBLEMS WITH SYNCHROTRON RADIATION PHASE 
CONTRAST IMAGING OF MICRO-OBJECTS IN CRYSTALS
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Abstract. Problems in experimental study of real crystal structures using phase-contrast imaging with 
synchrotron radiation (SR) are discussed and methods for their solution are proposed. The experiment 
was conducted at the Pohang Light Source, in Pohang City, Republic of Korea. A diamond crystal was 
examined. The capabilities of the method in studying weak changes in crystal density under conditions 
of spatially non-uniform beam intensity, beam statistical noise and detector imperfections are analyzed. 
Images of various shapes and sizes were obtained, showing the presence of defects. However, a more 
detailed analysis is required to identify the defects.


